Group classification of the time-fractional Kaup-Kupershmidt equation

被引:20
|
作者
Jafari, H. [1 ,2 ]
Kadkhoda, N. [3 ]
Azadi, M. [1 ]
Yaghoubi, M. [4 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
[2] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
[3] Bozorgmehr Univ Qaenat, Fac Basic Sci, Dept Math, Qaenat, Iran
[4] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Fractional differential equation; Lie group; Time-fractional Kaup-Kupershmidt equation; Rieman-Liouville derivative; Group-invariant solutions; LIE GROUP; DERIVATIVES;
D O I
10.24200/sci.2017.4034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finding the symmetries of the nonlinear fractional differential equations plays an important role in study of fractional differential equations. In this manuscript, firstly, we are interested in finding the Lie point symmetries of the time-fractional Kaup-Kupershmidt equation. Afterwards, by using the infinitesimal generators, we determine their corresponding invariant solutions. (C) 2017 Sharif University of Technology. All rights reserved.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 50 条
  • [1] An efficient computational technique for time-fractional Kaup-Kupershmidt equation
    Prakasha, Doddabhadrappla Gowda
    Malagi, Naveen Sanju
    Veeresha, Pundikala
    Prasannakumara, Ballajja Chandrappa
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1299 - 1316
  • [2] Nonlocal symmetries and the Kaup-Kupershmidt equation
    Reyes, EG
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
  • [3] A Note on Analysis of the Kaup-Kupershmidt Equation
    Charalambous, Kyriakos
    Halder, Amlan K.
    Leach, Peter G. L.
    MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (SYMMETRY 2019), 2019, 2153
  • [4] The comparison of two reliable methods for accurate solution of time-fractional Kaup-Kupershmidt equation arising in capillary gravity waves
    Gupta, A. K.
    Ray, S. Saha
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (03) : 583 - 592
  • [5] LIE SYMMETRY ANALYSIS TO THE WEAKLY COUPLED KAUP-KUPERSHMIDT EQUATION WITH TIME FRACTIONAL ORDER
    Wang, Zhenli
    Zhang, Lihua
    Li, Chuanzhong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [6] Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel
    Al-Sawalha, M. Mossa
    Shah, Rasool
    Nonlaopon, Kamsing
    Khan, Imran
    Ababneh, Osama Y.
    AIMS MATHEMATICS, 2022, 8 (02): : 3730 - 3746
  • [7] The two-component Kaup-Kupershmidt equation
    Popowicz, Z
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (42): : L511 - L516
  • [8] Analysis of the Fractional-Order Kaup-Kupershmidt Equation via Novel Transforms
    Iqbal, Naveed
    Yasmin, Humaira
    Rezaiguia, Ali
    Kafle, Jeevan
    Almatroud, A. Othman
    Hassan, Taher S.
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [9] Numerical soliton solution of the Kaup-Kupershmidt equation
    Mohyud-Din, Syed Tauseef
    Yildirim, Ahmet
    Sariaydin, Selin
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2011, 21 (3-4) : 272 - 281
  • [10] Extended soliton solutions for the Kaup-Kupershmidt equation
    Verhoeven, C
    Musette, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2515 - 2523