ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM

被引:0
|
作者
程艺
机构
[1] Hefei
[2] University of Science and Technology
[3] Department of Mathematics
关键词
ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM; 一夕; Zn;
D O I
暂无
中图分类号
学科分类号
摘要
Ablowitz and Ladik have derived two kinds of discrete forms of A. K. N. S.-Zakharov-Shabat eigenvalue problems—one includes two potentials, while the other includes four potentials. This paper discusses the relations between these two kinds of discrete Ablowitz-Ladik eigenvalue problems in full.
引用
收藏
页码:582 / 594
页数:13
相关论文
共 50 条
  • [31] Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation
    Yu, Fajun
    [J]. PHYSICAL REVIEW E, 2015, 91 (03):
  • [32] ON THE SPATIAL ASYMPTOTICS OF SOLUTIONS OF THE ABLOWITZ-LADIK HIERARCHY
    Michor, Johanna
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4249 - 4258
  • [33] Finite genus solutions to the Ablowitz-Ladik equations
    Miller, PD
    Ercolani, NM
    Krichever, IM
    Levermore, CD
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (12) : 1369 - 1440
  • [34] Particle scattering and fusion for the Ablowitz-Ladik chain
    Brollo, Alberto
    Spohn, Herbert
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (32)
  • [35] Resolvent approach to the Ablowitz-Ladik linear system
    Pogrebkov, AK
    Prati, MC
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (12): : 1495 - 1505
  • [36] Implementation of the Backlund transformations for the Ablowitz-Ladik hierarchy
    Vekslerchik, V. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 6933 - 6953
  • [37] Dark soliton collisions of a discrete Ablowitz-Ladik equation for an electrical/optical system
    Xie, Xi-Yang
    Tian, Bo
    Wu, Xiao-Yu
    Jiang, Yan
    [J]. OPTICAL ENGINEERING, 2016, 55 (10)
  • [38] Jacobi elliptic function solutions of the Ablowitz-Ladik discrete nonlinear Schrodinger system
    Huang, Wenhua
    Liu, Yulu
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 786 - 792
  • [39] Localized modes on an Ablowitz-Ladik nonlinear impurity
    Molina, Mario I.
    [J]. PHYSICS LETTERS A, 2008, 372 (42) : 6388 - 6391
  • [40] The Ablowitz-Ladik system on a finite set of integers
    Xia, Baoqiang
    [J]. NONLINEARITY, 2018, 31 (07) : 3086 - 3114