EFFECTIVE LAGRANGIAN OF PATH INTEGRAL QUANTIZATION FORMALISM IN CURVED SPACE

被引:0
|
作者
阮图南
范洪义
尹鸿钧
机构
[1] University of Science and Technology of China Hefei
[2] University of Science and Technology of China Hefei
关键词
EFFECTIVE LAGRANGIAN OF PATH INTEGRAL QUANTIZATION FORMALISM IN CURVED SPACE;
D O I
暂无
中图分类号
学科分类号
摘要
In this article the Weyl-McCoy correspondence of the classical Hamiltonian is extendedto curved space, and a general form of effective Lagrangian for path integral quantization incurved space is presented. To compare with the case in flat space, there need be in the Lee-Yang Lagrangian a metric correction term, which, being proportional to δ(0), is also a powerseries in δ(0). If a quantum mechanical Hamiltonian that is invariant under the point canonicaltransformation is demanded, a scalar curvature term will appear in the classical Lagrangianautomatically.
引用
收藏
页码:618 / 625
页数:8
相关论文
共 50 条
  • [31] Path Integral Quantization of Volume
    Adrian P. C. Lim
    Annales Henri Poincaré, 2020, 21 : 1311 - 1327
  • [32] Dimensional regularization of the path integral in curved space on an infinite time interval
    Bastianelli, F
    Corradini, O
    van Nieuwenhuizen, P
    PHYSICS LETTERS B, 2000, 490 (1-2) : 154 - 162
  • [33] FIBER-BUNDLE FORMALISM FOR QUANTIZATION IN CURVED SPACES
    WYROZUMSKI, T
    PHYSICAL REVIEW D, 1990, 42 (04): : 1152 - 1158
  • [34] On The Lagrangian Formalism In Phase-Space
    Bizdadea, C.
    Barcan, M. M.
    Miauta, M. T.
    Saliu, S. O.
    PROCEEDINGS OF THE PHYSICS CONFERENCE TIM - 11, 2012, 1472 : 12 - 16
  • [35] QED spectra in the path integral formalism
    Simonov, Yu. A.
    PHYSICAL REVIEW D, 2014, 90 (01):
  • [36] A naturally regularized path integral formalism
    Kourosh Nozari
    M. Hajebrahimi
    M. Khodadi
    A. Etemadi
    The European Physical Journal C, 2019, 79
  • [37] A PATH INTEGRAL FORMALISM OF COLLECTIVE MOTION
    KURATSUJI, H
    PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (01): : 224 - 240
  • [38] A naturally regularized path integral formalism
    Nozari, Kourosh
    Hajebrahimi, M.
    Khodadi, M.
    Etemadi, A.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (06):
  • [39] Gauge freedom in the path integral formalism
    Sakoda, Seiji
    PROGRESS OF THEORETICAL PHYSICS, 2007, 117 (04): : 745 - 763
  • [40] ON THE ORDERING INDEPENDENCE OF THE PATH INTEGRAL FORMALISM
    KASHIWA, T
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (06): : 2164 - 2178