Dimensional regularization of the path integral in curved space on an infinite time interval

被引:25
|
作者
Bastianelli, F
Corradini, O
van Nieuwenhuizen, P
机构
[1] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[3] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
关键词
D O I
10.1016/S0370-2693(00)00978-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use dimensional regularization to evaluate quantum mechanical path integrals in arbitrary curved spaces on an infinite time interval. We perform 3-loop calculations in Riemann normal coordinates, and 2-loop calculations in general coordinates. It is shown that one only needs a covariant two-loop counterterm (V-DR = (h2)/R-8) to obtain the same results as obtained earlier in other regularization schemes. It is also shown that the mass term needed in order to avoid infrared divergences explicitly breaks general covariance in the final result. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 50 条