Improved Upper Bounds on Acyclic Edge Colorings

被引:0
|
作者
Yu-wen WU [1 ]
Gui-ying YAN [2 ]
机构
[1] School of Information,Beijing Wuzi University
[2] Academy of Mathematics and Systems Science,Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
graph coloring; acyclic edge coloring; Lovàsz local lemma;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors.The acyclic chromatic index of a graph G,denoted by a′(G),is the minimum number k such that there is an acyclic edge coloring using k colors.It is known that a′(G)≤16△for every graph G where △denotes the maximum degree of G.We prove that a′(G)<13.8△for an arbitrary graph G.We also reduce the upper bounds of a′(G)to 9.8△and 9△with girth 5 and 7,respectively.
引用
收藏
页码:305 / 308
页数:4
相关论文
共 50 条
  • [41] Upper bounds on the acyclic chromatic index of degenerate graphs
    Anto, Nevil
    Basavaraju, Manu
    Hegde, Suresh Manjanath
    Kulamarva, Shashanka
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [42] IMPROVED BOUNDS FOR PERFECT SAMPLING OF k-COLORINGS IN GRAPHS
    Bhandari, Siddharth
    Chakraborty, Sayantan
    SIAM JOURNAL ON COMPUTING, 2022, 51 (03) : 54 - 74
  • [43] Improved Bounds for Perfect Sampling of k-Colorings in Graphs
    Bhandari, Siddharth
    Chakraborty, Sayantan
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 631 - 642
  • [44] Acyclic colorings of products of trees
    Jamison, Robert E.
    Matthews, Gretchen L.
    Villalpando, John
    INFORMATION PROCESSING LETTERS, 2006, 99 (01) : 7 - 12
  • [45] Acyclic improper colorings of graphs
    Boiron, P
    Sopena, E
    Vignal, L
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 97 - 107
  • [46] ACYCLIC COLORINGS OF GRAPHS WITH OBSTRUCTIONS
    Chuet, Quentin
    Cohen, Johanne
    Pirot, Francois
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2025, 39 (01) : 505 - 532
  • [47] Note on acyclic colorings of graphs
    Xu, R
    ARS COMBINATORIA, 2004, 72 : 235 - 239
  • [48] ACYCLIC COLORINGS OF PLANAR GRAPHS
    GODDARD, W
    DISCRETE MATHEMATICS, 1991, 91 (01) : 91 - 94
  • [49] Acyclic Colorings of Graph Subdivisions
    Mondal, Debajyoti
    Nishat, Rahnuma Islam
    Whitesides, Sue
    Rahman, Md Saidur
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 247 - +
  • [50] Acyclic colorings of subcubic graphs
    Skulrattanakulchai, S
    INFORMATION PROCESSING LETTERS, 2004, 92 (04) : 161 - 167