Acyclic improper colorings of graphs

被引:0
|
作者
Boiron, P [1 ]
Sopena, E [1 ]
Vignal, L [1 ]
机构
[1] Univ Bordeaux 1, LABRI, F-33405 Talence, France
关键词
graph coloring;
D O I
10.1002/(SICI)1097-0118(199909)32:1<97::AID-JGT9>3.3.CO;2-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce the new notion of acyclic improper colorings of graphs. An improper coloring of a graph is a vertex-coloring in which adjacent vertices are allowed to have the same color, but each color class V-i satisfies some condition depending on i. Such a coloring is acyclic if there are no alternating 2-colored cycles. We prove that every outerplanar graph can be acyclically 2-colored in such a way that each monochromatic subgraph has degree at most five and that this result is best possible. For planar graphs, we prove some negative results and state some open problems. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [1] On Acyclic Colorings of Graphs
    Ahmed, Abu Reyan
    Islam, Md Mazharul
    Rahman, Md Saidur
    2012 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2012, : 95 - 100
  • [2] Fixing Improper Colorings of Graphs
    Junosza-Szaniawski, Konstanty
    Liedloff, Mathieu
    Rzazewski, Pawel
    SOFSEM 2015: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2015, 8939 : 266 - 276
  • [3] Fixing improper colorings of graphs
    Garnero, Valentin
    Junosza-Szaniawski, Konstanty
    Liedloff, Mathieu
    Montealegre, Pedro
    Rzazewski, Pawel
    THEORETICAL COMPUTER SCIENCE, 2018, 711 : 66 - 78
  • [4] Note on acyclic colorings of graphs
    Xu, R
    ARS COMBINATORIA, 2004, 72 : 235 - 239
  • [5] ACYCLIC COLORINGS OF PLANAR GRAPHS
    GODDARD, W
    DISCRETE MATHEMATICS, 1991, 91 (01) : 91 - 94
  • [6] ACYCLIC COLORINGS OF GRAPHS WITH OBSTRUCTIONS
    Chuet, Quentin
    Cohen, Johanne
    Pirot, Francois
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2025, 39 (01) : 505 - 532
  • [7] ACYCLIC COLORINGS OF PLANAR GRAPHS
    GRUNBAUM, B
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) : 390 - 408
  • [8] Acyclic edge colorings of graphs
    Alon, N
    Sudakov, B
    Zaks, A
    JOURNAL OF GRAPH THEORY, 2001, 37 (03) : 157 - 167
  • [9] Acyclic colorings of subcubic graphs
    Skulrattanakulchai, S
    INFORMATION PROCESSING LETTERS, 2004, 92 (04) : 161 - 167
  • [10] On acyclic colorings of graphs on surfaces
    Alon, N
    Mohar, B
    Sanders, DP
    ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 : 273 - 283