Acyclic improper colorings of graphs

被引:0
|
作者
Boiron, P [1 ]
Sopena, E [1 ]
Vignal, L [1 ]
机构
[1] Univ Bordeaux 1, LABRI, F-33405 Talence, France
关键词
graph coloring;
D O I
10.1002/(SICI)1097-0118(199909)32:1<97::AID-JGT9>3.3.CO;2-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce the new notion of acyclic improper colorings of graphs. An improper coloring of a graph is a vertex-coloring in which adjacent vertices are allowed to have the same color, but each color class V-i satisfies some condition depending on i. Such a coloring is acyclic if there are no alternating 2-colored cycles. We prove that every outerplanar graph can be acyclically 2-colored in such a way that each monochromatic subgraph has degree at most five and that this result is best possible. For planar graphs, we prove some negative results and state some open problems. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [31] Acyclic edge colorings of planar graphs and series-parallel graphs
    HOU JianFeng
    Science China Mathematics, 2009, (03) : 605 - 616
  • [32] Acyclic edge colorings of planar graphs and series-parallel graphs
    HOU JianFeng WU JianLiang LIU GuiZhen LIU Bin Department of Mathematics Shandong University Jinan China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (03) : 605 - 616
  • [33] On r-acyclic edge colorings of planar graphs
    Zhang, Xin
    Wang, Guanghui
    Yu, Yong
    Li, Jinbo
    Liu, Guizhen
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2048 - 2053
  • [34] Acyclic improper colouring of graphs with maximum degree 4
    Anna Fiedorowicz
    Elżbieta Sidorowicz
    Science China Mathematics, 2014, 57 : 2485 - 2494
  • [35] Acyclic improper colouring of graphs with maximum degree 4
    FIEDOROWICZ Anna
    SIDOROWICZ Elzbieta
    ScienceChina(Mathematics), 2014, 57 (12) : 2485 - 2494
  • [36] Acyclic improper colourings of graphs with bounded maximum degree
    Addario-Berry, Louigi
    Esperet, Louis
    Kang, Ross J.
    McDiarmid, Colin J. H.
    Pinlou, Alexandre
    DISCRETE MATHEMATICS, 2010, 310 (02) : 223 - 229
  • [37] Acyclic improper colouring of graphs with maximum degree 4
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2485 - 2494
  • [38] Acyclic total colorings of planar graphs without l cycles
    Sun, Xiang Yong
    Wu, Jian Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (07) : 1315 - 1322
  • [39] Acyclic total colorings of planar graphs without l cycles
    Xiang Yong Sun
    Jian Liang Wu
    Acta Mathematica Sinica, English Series, 2011, 27 : 1315 - 1322
  • [40] Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs
    Cheng, Christine
    McDermid, Eric
    Suzuki, Ichiro
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 107 - 118