A High-Order Newton-Like Method

被引:1
|
作者
WANG Xiuhua1
2. Department of Mathematics
3. Microsoft Corporation
机构
基金
中国国家自然科学基金;
关键词
non-linear equation; iterative method; Newton’s method; root-finding;
D O I
暂无
中图分类号
O241.7 [非线性代数方程和超越方程的数值解法];
学科分类号
摘要
This paper gives a new iterative method to solve the non-linear equation. We prove that this method has the asymptotic convergent order. When the iterative times exceed 2,only one evaluation of the function and one of its first derivative is required by each iteration of the method.Therefore the new method is better than Newton’s method.
引用
收藏
页码:4 / 6
页数:3
相关论文
共 50 条
  • [31] ON NEWTON-LIKE METHODS
    DENNIS, JE
    NUMERISCHE MATHEMATIK, 1968, 11 (04) : 324 - &
  • [32] ON THE CONVERGENCE OF A NEWTON-LIKE METHOD UNDER WEAK CONDITIONS
    Argyros, Ioannis K.
    Ren, Hongmin
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (04): : 575 - 584
  • [33] Families of Newton-like methods with fourth-order convergence
    Jain, Divya
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (05) : 1072 - 1082
  • [34] Local convergence for some high convergence order Newton-like methods with frozen derivatives
    Argyros I.K.
    George S.
    SeMA Journal, 2015, 70 (1) : 47 - 59
  • [35] A new Newton-like method for solving nonlinear equations
    Saheya, B.
    Chen, Guo-qing
    Sui, Yun-kang
    Wu, Cai-ying
    SPRINGERPLUS, 2016, 5
  • [36] The inexact Newton-like method for inverse eigenvalue problem
    Chan, RH
    Chung, HL
    Xu, SF
    BIT NUMERICAL MATHEMATICS, 2003, 43 (01) : 7 - 20
  • [37] The Inexact Newton-Like Method for Inverse Eigenvalue Problem
    R. H. Chan
    H. L. Chung
    S.-F. Xu
    BIT Numerical Mathematics, 2003, 43 : 7 - 20
  • [38] A Monotone Newton-Like Method for the Computation of Fixed Points
    Mouhadjer, Lotfi
    Benahmed, Boubakeur
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 345 - 356
  • [39] On a Newton-like method for solving algebraic Riccati equations
    Guo, CH
    Laub, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) : 694 - 698
  • [40] A new continuation Newton-like method and its deformation
    Wu, XY
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 112 (01) : 75 - 78