A High-Order Newton-Like Method

被引:1
|
作者
WANG Xiuhua1
2. Department of Mathematics
3. Microsoft Corporation
机构
基金
中国国家自然科学基金;
关键词
non-linear equation; iterative method; Newton’s method; root-finding;
D O I
暂无
中图分类号
O241.7 [非线性代数方程和超越方程的数值解法];
学科分类号
摘要
This paper gives a new iterative method to solve the non-linear equation. We prove that this method has the asymptotic convergent order. When the iterative times exceed 2,only one evaluation of the function and one of its first derivative is required by each iteration of the method.Therefore the new method is better than Newton’s method.
引用
收藏
页码:4 / 6
页数:3
相关论文
共 50 条
  • [21] A modified Newton-like method for nonlinear equations
    Wu, Song
    Wang, Haijun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [22] Newton-like method for line outage simulation
    Lo, KL
    Meng, ZJ
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2004, 151 (02) : 225 - 231
  • [23] Semilocal Convergence Theorem for a Newton-like Method
    Lin, Rong-Fei
    Wu, Qing-Biao
    Chen, Min-Hong
    Liu, Lu
    Dai, Ping-Fei
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 482 - 494
  • [24] A Newton-like method for nonlinear system of equations
    María D. González-Lima
    Flor Montes de Oca
    Numerical Algorithms, 2009, 52 : 479 - 506
  • [25] Concerning the Convergence of a Modified Newton-Like Method
    Argyros, Ioannis K.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (03): : 785 - 792
  • [26] ON THE NEWTON-LIKE METHOD FOR THE INCLUSION OF A POLYNOMIAL ZERO
    Petkovic, Ljiljana D.
    Petkovic, Miodrag S.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (01) : 217 - 227
  • [27] Power and DOA estimation with newton-like method
    He Z.-Y.
    Pang X.-F.
    Zhao Z.-Q.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2010, 39 (02): : 173 - 175+181
  • [28] NEW ALGORITHMS OF DISCRETIZED NEWTON-LIKE METHOD
    PANKIEWICZ, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (09): : 537 - +
  • [29] A modified Newton-like method for nonlinear equations
    Song Wu
    Haijun Wang
    Computational and Applied Mathematics, 2020, 39
  • [30] A Newton-like method for computing deflating subspaces
    Demyanko, Kirill V.
    Nechepurenko, Yuri M.
    Sadkane, Miloud
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (04) : 289 - 301