Stability of a Class of Coupled Rigid-elastic Systems With Symmetry-breaking

被引:0
|
作者
程耀
黄克累
陆启韶
机构
[1] Beijing University of Aeronautics and Astronautics
[2] Beijing 100083
[3] PRC
基金
中国国家自然科学基金;
关键词
Hamiltonian structure; Poisson manifold; rigid-elastic coupled system; stability; casimir function;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
In this paper, the Poisson structures and Casimir functions, which play an important role in stability analysis of stationary motions, are given for a class of coupled rigid-elastic systems with symmetry-breaking. As a practical example, the specific Casimir function is given for a rigid-elastic coupled body with a fixed point subjected to gravitational force. At last, a set of sufficient conditions for stability of stationary motions of a rigid-elastic body in a circular orbit are given by the energy-Casimir method.
引用
收藏
页码:1062 / 1069
页数:8
相关论文
共 50 条
  • [41] SYMMETRY-BREAKING BIFURCATIONS IN STOPPELLIS PROBLEM FOR PSEUDO-RIGID BODIES
    PIERCE, JF
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (05): : 683 - 724
  • [42] Coupled rigid-elastic motion of filament-wound composite robotic arms
    Oral, S
    Ider, SK
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 147 (1-2) : 117 - 123
  • [43] Symmetry-breaking charge separation in weakly coupled anthracene dimers
    Lv, Liping
    Liu, Heyuan
    Li, Tianyu
    Cui, Boce
    Wang, Tianying
    Song, Xiaojuan
    Chen, Wenmiao
    Chen, Yanli
    Li, Xiyou
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (47) : 16782 - 16791
  • [44] SYMMETRY-BREAKING BIFURCATION IN THE SYSTEM OF DISSIPATIVELY COUPLED RECURRENT MAPPINGS
    KUZNETSOV, SP
    PIKOVSKIJ, AS
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1989, 32 (01): : 49 - 54
  • [45] SYMMETRY-BREAKING INTERACTIONS AND HYSTERESIS IN SIMPLE MAGNETIC SYSTEMS
    HARMON, BN
    ERBER, T
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (01): : 93 - &
  • [46] A STUDY OF INSTABILITY TO ELECTRICAL SYMMETRY-BREAKING IN UNICELLULAR SYSTEMS
    LARTER, R
    ORTOLEVA, P
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1982, 96 (02) : 175 - 200
  • [47] CHIRAL SYMMETRY-BREAKING IN NON-EQUILIBRIUM SYSTEMS
    KONDEPUDI, DK
    NELSON, GW
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (14) : 1023 - 1026
  • [48] SYMMETRY-BREAKING AND RANDOM WAVES FOR MAGNETIC SYSTEMS ON A CIRCLE
    EISELE, T
    ELLIS, RS
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 63 (03): : 297 - 348
  • [49] SYMMETRY-BREAKING IN DISTRIBUTED SYSTEMS AND MODULATIONAL SPATIOTEMPORAL INTERMITTENCY
    KURTHS, J
    PIKOVSKY, AS
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 5 (10) : 1893 - 1899
  • [50] DYNAMIC SYMMETRY-BREAKING IN MIXED-VALENCE SYSTEMS
    ALASCIO, B
    BALSEIRO, C
    ORTIZ, G
    KIWI, M
    LAGOS, M
    [J]. PHYSICAL REVIEW B, 1988, 38 (07): : 4698 - 4704