SYMMETRY-BREAKING IN DISTRIBUTED SYSTEMS AND MODULATIONAL SPATIOTEMPORAL INTERMITTENCY

被引:8
|
作者
KURTHS, J
PIKOVSKY, AS
机构
[1] Max-Planck-Arbeitsgruppe 'Nichtlineare Dynamik', Universität Potsdam, Potsdam
关键词
D O I
10.1016/0960-0779(94)00198-Y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that at the symmetry-breaking transition of spatio-temporal chaos a new type of spatio-temporal intermittency is observed. This regime is a direct analogue of modulational intermittency previously investigated in nondistributed systems. Statistical properties of modulational spatio-temporal intermittency are investigated, and correspondence to the Kardar-Parisi-Zhang equation is established.
引用
收藏
页码:1893 / 1899
页数:7
相关论文
共 50 条
  • [1] Symmetry-breaking dynamics of the modulational instability spectrum
    Droques, M.
    Barviau, B.
    Kudlinski, A.
    Taki, M.
    Boucon, A.
    Sylvestre, T.
    Mussot, A.
    [J]. OPTICS LETTERS, 2011, 36 (08) : 1359 - 1361
  • [2] Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems
    Lai, YC
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : R4267 - R4270
  • [3] SYMMETRY-BREAKING IN DISTRIBUTED NETWORKS
    ITAI, A
    RODEH, M
    [J]. INFORMATION AND COMPUTATION, 1990, 88 (01) : 60 - 87
  • [4] Distributed Symmetry-Breaking Algorithms for Congested Cliques
    Barenboim, Leonid
    Khazanov, Victor
    [J]. COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018, 2018, 10846 : 41 - 52
  • [5] The Topology of Randomized Symmetry-Breaking Distributed Computing
    Fraigniaud, Pierre
    Gelles, Ran
    Lotker, Zvi
    [J]. PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '21), 2021, : 415 - 425
  • [6] ON SYMMETRY-BREAKING INSTABILITIES IN DISSIPATIVE SYSTEMS
    PRIGOGINE, I
    NICOLIS, G
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (09): : 3542 - +
  • [7] SYMMETRY-BREAKING IN QUANTUM CHAOTIC SYSTEMS
    PANDEY, A
    RAMASWAMY, R
    SHUKLA, P
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1993, 41 (01): : L75 - L81
  • [8] CHIRAL SYMMETRY-BREAKING IN LIVING SYSTEMS
    DING, XM
    DING, DF
    XU, JH
    [J]. IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1987, 4 (01): : 33 - 46
  • [9] SYMMETRY-BREAKING IN HAMILTONIAN-SYSTEMS
    AMBROSETTI, A
    ZELATI, VC
    EKELAND, I
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 67 (02) : 165 - 184
  • [10] Symmetry Properties in the Symmetry-Breaking of Nonsmooth Dynamical Systems
    Ageno, Alessio
    Sinopoli, Anna
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (01): : 1 - 9