Stability of a Class of Coupled Rigid-elastic Systems With Symmetry-breaking

被引:0
|
作者
程耀
黄克累
陆启韶
机构
[1] Beijing University of Aeronautics and Astronautics
[2] Beijing 100083
[3] PRC
基金
中国国家自然科学基金;
关键词
Hamiltonian structure; Poisson manifold; rigid-elastic coupled system; stability; casimir function;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
In this paper, the Poisson structures and Casimir functions, which play an important role in stability analysis of stationary motions, are given for a class of coupled rigid-elastic systems with symmetry-breaking. As a practical example, the specific Casimir function is given for a rigid-elastic coupled body with a fixed point subjected to gravitational force. At last, a set of sufficient conditions for stability of stationary motions of a rigid-elastic body in a circular orbit are given by the energy-Casimir method.
引用
收藏
页码:1062 / 1069
页数:8
相关论文
共 50 条
  • [1] STABILITY OF A CLASS OF COUPLED RIGID-ELASTIC SYSTEMS WITH SYMMETRY-BREAKING
    CHENG, Y
    HUANG, KL
    LU, QS
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1994, 37 (09): : 1062 - 1069
  • [2] STABILITY OF SPONTANEOUS SYMMETRY-BREAKING IN A CLASS OF SO(10) MODELS
    HE, XG
    MELJANAC, S
    [J]. PHYSICAL REVIEW D, 1989, 40 (06) : 2098 - 2102
  • [3] STABILITY OF SPONTANEOUS SYMMETRY-BREAKING IN A CLASS OF SO(10) MODELS
    BASECQ, J
    MELJANAC, S
    ORAIFEARTAIGH, L
    [J]. PHYSICAL REVIEW D, 1989, 39 (10): : 3110 - 3120
  • [4] STRUCTURAL STABILITY AND SYMMETRY-BREAKING
    SCHIFFMANN, Y
    [J]. PHYSICA A, 1982, 114 (1-3): : 84 - 87
  • [5] ON STABILITY OF SYMMETRY-BREAKING SOLUTIONS
    ITO, D
    KURATA, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1964, 31 (06): : 1174 - &
  • [6] COUPLED CLUSTER TREATMENT OF SYMMETRY-BREAKING
    STANTON, JF
    WATTS, JD
    GAUSS, J
    BARTLETT, RJ
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 202 : 15 - PHYS
  • [7] Symmetry-breaking bifurcations of the uplifted elastic strip
    Domokos, G
    Fraser, WB
    Szeberényi, I
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 185 (02) : 67 - 77
  • [8] ON SYMMETRY-BREAKING INSTABILITIES IN DISSIPATIVE SYSTEMS
    PRIGOGINE, I
    NICOLIS, G
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (09): : 3542 - +
  • [9] CATALYZED SYMMETRY-BREAKING IN STRONGLY COUPLED QED
    KOGUT, JB
    DAGOTTO, E
    KOCIC, A
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (09) : 1001 - 1004
  • [10] SYMMETRY-BREAKING BIFURCATION FOR COUPLED CHAOTIC ATTRACTORS
    PIKOVSKY, AS
    GRASSBERGER, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19): : 4587 - 4597