SYMMETRY-BREAKING BIFURCATION FOR COUPLED CHAOTIC ATTRACTORS

被引:202
|
作者
PIKOVSKY, AS
GRASSBERGER, P
机构
[1] Dept. of Phys., Bergische Univ. Wuppertal
来源
关键词
D O I
10.1088/0305-4470/24/19/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider transitions from synchronous to asynchronous chaotic motion in two identical dissipatively coupled one-dimensional mappings. We show that the probability density of the asymmetric component satisfies a scaling law. The exponent in this scaling law varies continuously with the distance from the bifurcation point, and is determined by the spectrum of local Lyapunov exponents of the uncoupled map. Finally we show that the topology of the invariant set is rather unusual: though the attractor for supercritical coupling is a line, it is surrounded by a strange invariant set which is dense in a two-dimensional neighbourhood of the attractor.
引用
收藏
页码:4587 / 4597
页数:11
相关论文
共 50 条
  • [1] ON THE SYMMETRY-BREAKING BIFURCATION OF CHAOTIC ATTRACTORS
    SZABO, KG
    TEL, T
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (3-4) : 925 - 948
  • [2] BIFURCATION AND SYMMETRY-BREAKING
    GAETA, G
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (01): : 1 - 87
  • [3] BIFURCATION AND SYMMETRY-BREAKING
    SMOLLER, J
    WASSERMAN, AG
    [J]. INVENTIONES MATHEMATICAE, 1990, 100 (01) : 63 - 95
  • [4] Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems
    Lai, YC
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : R4267 - R4270
  • [5] Symmetry-breaking perturbations and strange attractors
    LitvakHinenzon, A
    RomKedar, V
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 4964 - 4978
  • [6] SYMMETRY-BREAKING BIFURCATION IN THE SYSTEM OF DISSIPATIVELY COUPLED RECURRENT MAPPINGS
    KUZNETSOV, SP
    PIKOVSKIJ, AS
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1989, 32 (01): : 49 - 54
  • [7] Symmetry breaking crisis of chaotic attractors
    Zhang Ying
    Lei You-Ming
    Fang Tong
    [J]. ACTA PHYSICA SINICA, 2009, 58 (06) : 3799 - 3805
  • [8] THE COMPUTATION OF SYMMETRY-BREAKING BIFURCATION POINTS
    WERNER, B
    SPENCE, A
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) : 388 - 399
  • [9] SYMMETRY-BREAKING IN EQUIVARIANT BIFURCATION PROBLEMS
    FIELD, MJ
    RICHARDSON, RW
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 22 (01): : 79 - 84
  • [10] Symmetry breaking bifurcations of chaotic attractors
    Aston, PJ
    Dellnitz, M
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1643 - 1676