Projective spectrum and kernel bundle

被引:0
|
作者
HE Wei [1 ]
YANG RongWei [2 ]
机构
[1] Department of Mathematics,Southeast University
[2] Department of Mathematics and Statistics,The State University of New York
基金
中国国家自然科学基金;
关键词
projective spectrum; domain of holomorphy; Clifford algebra; kernel bundle; Chern character;
D O I
暂无
中图分类号
O185 [射影(投影)几何、画法几何];
学科分类号
摘要
For a tuple A=(A;,A;,…,A;) of elements in a unital algebra B over C,its projective spectrum P(A) or p(A) is the collection of z∈C;,or respectively z∈P;,such that A(z)=z;A;+z;A;+…+z;A;is not invertible in Β.The first half of this paper proves that if B is Banach then the resolvent set P;(A) consists of domains of holomorphy.The second half computes the projective spectrum for the generating vectors of a Clifford algebra.The Chern character of an associated kernel bundle is shown to be nontrivial.
引用
收藏
页码:2363 / 2372
页数:10
相关论文
共 50 条
  • [1] Projective spectrum and kernel bundle
    Wei He
    RongWei Yang
    Science China Mathematics, 2015, 58 : 2363 - 2372
  • [2] Projective spectrum and kernel bundle
    He Wei
    Yang RongWei
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) : 2363 - 2372
  • [3] PROJECTIVE SPECTRUM AND KERNEL BUNDLE. II
    He, Wei
    Wang, Xiaofeng
    Yang, Rongwei
    JOURNAL OF OPERATOR THEORY, 2017, 78 (02) : 417 - 433
  • [5] Kahler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle
    Wang, Kun
    Zhong, Chun Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1279 - 1291
  • [6] Projective geometry on the bundle of volume forms
    Dhooghe P.F.
    Van Vlierden A.
    Journal of Geometry, 1998, 62 (1-2) : 66 - 83
  • [7] MANIFOLDS WITH TWO PROJECTIVE BUNDLE STRUCTURES
    Occhetta, Gianluca
    Romano, Eleonora
    Conde, Luis Sola
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1381 - 1395
  • [8] Deformations of the tangent bundle of projective manifolds
    Peternell, Thomas
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (11)
  • [9] Kähler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle
    Kun Wang
    Chun Ping Zhong
    Acta Mathematica Sinica, English Series, 2020, 36 : 1279 - 1291
  • [10] K?hler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle
    Kun WANG
    Chun Ping ZHONG
    Acta Mathematica Sinica,English Series, 2020, (11) : 1279 - 1291