Projective spectrum and kernel bundle

被引:0
|
作者
HE Wei [1 ]
YANG RongWei [2 ]
机构
[1] Department of Mathematics,Southeast University
[2] Department of Mathematics and Statistics,The State University of New York
基金
中国国家自然科学基金;
关键词
projective spectrum; domain of holomorphy; Clifford algebra; kernel bundle; Chern character;
D O I
暂无
中图分类号
O185 [射影(投影)几何、画法几何];
学科分类号
摘要
For a tuple A=(A;,A;,…,A;) of elements in a unital algebra B over C,its projective spectrum P(A) or p(A) is the collection of z∈C;,or respectively z∈P;,such that A(z)=z;A;+z;A;+…+z;A;is not invertible in Β.The first half of this paper proves that if B is Banach then the resolvent set P;(A) consists of domains of holomorphy.The second half computes the projective spectrum for the generating vectors of a Clifford algebra.The Chern character of an associated kernel bundle is shown to be nontrivial.
引用
收藏
页码:2363 / 2372
页数:10
相关论文
共 50 条