K?hler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle

被引:0
|
作者
Kun WANG [1 ]
Chun Ping ZHONG [1 ]
机构
[1] School of Mathematical Sciences, Xiamen University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
Let(M, g) be a compact K?hler manifold and(E, F) be a holomorphic Finsler vector bundle of rank r ≥ 2 over M. In this paper, we prove that there exists a K?hler metric Φ defined on the pro jective bundle P(E) of E, which comes naturally from g and F. Moreover, a necessary and sufficient condition for Φ having positive scalar curvature is obtained, and a sufficient condition for Φ having positive Ricci curvature is established.
引用
收藏
页码:1279 / 1291
页数:13
相关论文
共 50 条
  • [1] Kähler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle
    Kun Wang
    Chun Ping Zhong
    Acta Mathematica Sinica, English Series, 2020, 36 : 1279 - 1291
  • [2] K?hler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle
    Kun WANG
    Chun Ping ZHONG
    Acta Mathematica Sinica, 2020, 36 (11) : 1279 - 1291
  • [3] Kahler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle
    Wang, Kun
    Zhong, Chun Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1279 - 1291
  • [4] A Donaldson type functional on a holomorphic Finsler vector bundle
    Huitao Feng
    Kefeng Liu
    Xueyuan Wan
    Mathematische Annalen, 2017, 369 : 997 - 1019
  • [5] A Donaldson type functional on a holomorphic Finsler vector bundle
    Feng, Huitao
    Liu, Kefeng
    Wan, Xueyuan
    MATHEMATISCHE ANNALEN, 2017, 369 (3-4) : 997 - 1019
  • [6] Khler Finsler Metrics Are Actually Strongly Khler
    Bin CHEN Yibing SHEN Center of Mathematical Science
    ChineseAnnalsofMathematics, 2009, 30 (02) : 173 - 178
  • [7] Kähler Finsler metrics are actually strongly Kähler
    Bin Chen
    Yibing Shen
    Chinese Annals of Mathematics, Series B, 2009, 30 : 173 - 178
  • [8] PROJECTIVE VECTOR FIELDS ON THE TANGENT BUNDLE WITH A CLASS OF RIEMANNIAN METRICS
    Gezer, Aydin
    Bilen, Lokman
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (05): : 587 - 596
  • [9] Kähler Finsler metrics and conformal deformations
    Bin Chen
    Yibing Shen
    Lili Zhao
    Israel Journal of Mathematics, 2022, 248 : 355 - 382
  • [10] RIEMANNIAN METRICS ON THE TANGENT BUNDLE OF A FINSLER SUBMANIFOLD
    Bejancu, Aurel
    Farran, Hani Reda
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 429 - 436