K?hler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle

被引:0
|
作者
Kun WANG [1 ]
Chun Ping ZHONG [1 ]
机构
[1] School of Mathematical Sciences, Xiamen University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
Let(M, g) be a compact K?hler manifold and(E, F) be a holomorphic Finsler vector bundle of rank r ≥ 2 over M. In this paper, we prove that there exists a K?hler metric Φ defined on the pro jective bundle P(E) of E, which comes naturally from g and F. Moreover, a necessary and sufficient condition for Φ having positive scalar curvature is obtained, and a sufficient condition for Φ having positive Ricci curvature is established.
引用
收藏
页码:1279 / 1291
页数:13
相关论文
共 50 条