Existence of the Eigenvalues for the Cone Degenerate p-Laplacian

被引:0
|
作者
Hua CHEN [1 ]
Yawei WEI [2 ]
机构
[1] School of Mathematics and Statistics, Wuhan University
[2] School of Mathematical Sciences and LPMC, Nankai
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with the eigenvalue problem for cone degenerate p-Laplacian. First the authors introduce the corresponding weighted Sobolev spaces with important inequalities and embedding properties. Then by adapting LusternikSchnirelman theory, they prove the existence of infinity many eigenvalues and eigenfunctions. Finally, the asymptotic behavior of the eigenvalues is given.
引用
收藏
页码:217 / 236
页数:20
相关论文
共 50 条
  • [21] Eigenvalues of the discrete p-Laplacian for graphs
    Amghibech, S
    [J]. ARS COMBINATORIA, 2003, 67 : 283 - 302
  • [22] Mixed eigenvalues of discrete p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (06) : 1261 - 1292
  • [23] Existence problems for the p-Laplacian
    Edward, Julian
    Hudson, Steve
    Leckband, Mark
    [J]. FORUM MATHEMATICUM, 2015, 27 (02) : 1203 - 1225
  • [24] Estimates for eigenvalues of weighted Laplacian and weighted p-Laplacian
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 335 - 353
  • [26] Existence of Solutions for a p-Laplacian System with a Nonresonance Condition Between the First and the Second Eigenvalues
    Dob, Sara
    Lekhal, Hakim
    Maouni, Messaoud
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [27] CONTINUITY OF THE VARIATIONAL EIGENVALUES OF THE p-LAPLACIAN WITH RESPECT TO p
    Parini, Enea
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 376 - 381
  • [28] Conformal upper bounds for the eigenvalues of the p-Laplacian
    Colbois, Bruno
    Provenzano, Luigi
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (05): : 2128 - 2147
  • [29] Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
    El Manouni, Said
    Marino, Greta
    Winkert, Patrick
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 304 - 320
  • [30] Eigenvalues of the radial p-Laplacian with a potential on (0, ∞)
    Brown, B. M.
    Eastham, M. S. P.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 111 - 119