Existence of Solutions for a p-Laplacian System with a Nonresonance Condition Between the First and the Second Eigenvalues

被引:1
|
作者
Dob, Sara [1 ]
Lekhal, Hakim [1 ]
Maouni, Messaoud [1 ]
机构
[1] Univ 20 August 1955 Skikda, Dept Math, Lab Appl Math & Hist & Didact Math LAMAHIS, Skikda, Algeria
关键词
Quasi-elliptic equations; Degree-theoretic methods; Eigenvalues; Sobolev spaces;
D O I
10.5269/bspm.49016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the existence of positive solutions for the quasilinear elliptic system {-Delta(p)u(x) - f(1)(x, v(x)) + h(1)(x) in Omega, -Delta(p)v(x) - f(2)(x, u(x)) + h(2)(x) in Omega, u = v = 0 on partial derivative Omega, where f(i)(x, s), (i = 1, 2) locates between the first and the second eigenvalues of the p-Laplacian. To prove the existence of solutions, we use the Leray-Schauder degree.
引用
收藏
页数:8
相关论文
共 50 条