Learning to focus: cascaded feature matching network for few-shot image recognition

被引:4
|
作者
Mengting CHEN [1 ]
Xinggang WANG [1 ]
Heng LUO [2 ]
Yifeng GENG [2 ]
Wenyu LIU [1 ]
机构
[1] School of Electronic Information and Communications, Huazhong University of Science and Technology
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Generally, deep networks learn to recognize a category of objects by training on a large number of annotated images accurately. However, a meta-learning problem known as a low-shot image recognition task occurs when a few images with annotations are available for learning a recognition model for a single category. Consequently, the objects in testing/query and training/support image datasets are likely to vary in terms of size, location, style, and so on. In this paper, we propose a method, cascaded feature matching network(CFMN), to solve this problem. We train the meta-learner to learn a more fine-grained and adaptive deep distance metric using feature matching block, which aligns associated features together and naturally ignores non-discriminative features. By applying the proposed feature matching block in different layers of the network, multi-scale information among the compared images is incorporated into the final cascaded matching feature, which boosts the recognition performance and generalizes better by learning on relationships. Moreover, the experiments for few-shot learning(FSL) using two standard datasets:miniImageNet and Omniglot, confirm the effectiveness of our proposed method. Besides, the multi-label fewshot task is first studied on a new data split of the COCO dataset, which further shows the superiority of the proposed feature matching network when performing the FSL in complex images.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 50 条
  • [41] Learning Relative Feature Displacement for Few-Shot Open-Set Recognition
    Deng, Shule
    Yu, Jin-Gang
    Wu, Zihao
    Gao, Hongxia
    Li, Yansheng
    Yang, Yang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5763 - 5774
  • [42] Learning Compositional Representations for Few-Shot Recognition
    Tokmakov, Pavel
    Wang, Yu-Xiong
    Hebert, Martial
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6381 - 6390
  • [43] Multimodal Few-Shot Learning for Gait Recognition
    Moon, Jucheol
    Nhat Anh Le
    Minaya, Nelson Hebert
    Choi, Sang-Il
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 15
  • [44] Iris recognition based on few-shot learning
    Lei, Songze
    Dong, Baihua
    Li, Yonggang
    Xiao, Feng
    Tian, Feng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [45] Learning a Latent Space with Triplet Network for Few-Shot Image Classification
    Wu, Jiaying
    Hu, Jinglu
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 5038 - 5044
  • [46] Few-Shot Learning Network for Out-of-Distribution Image Classification
    Osman I.I.
    Shehata M.S.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (06): : 1579 - 1591
  • [47] Mixture-based Feature Space Learning for Few-shot Image Classification
    Afrasiyabi, Arman
    Lalonde, Jean-Francois
    Gagne, Christian
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9021 - 9031
  • [48] Attention Matching Network for few-shot learning in the syndrome differentiation of cerebral stroke
    Zhao, Zijuan
    Song, Kai
    Ren, Xueting
    Qiang, Yan
    Zhao, Juanjuan
    Hou, Jiaxin
    Zhu, Junyi
    Xiao, Ning
    Zhang, Junlong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 911 - 927
  • [49] Attention Matching Network for few-shot learning in the syndrome differentiation of cerebral stroke
    Zijuan Zhao
    Kai Song
    Xueting Ren
    Yan Qiang
    Juanjuan Zhao
    Jiaxin Hou
    Junyi Zhu
    Ning Xiao
    Junlong Zhang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 911 - 927
  • [50] Disentangled Feature Representation for Few-Shot Image Classification
    Cheng, Hao
    Wang, Yufei
    Li, Haoliang
    Kot, Alex C.
    Wen, Bihan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10422 - 10435