Learning to focus: cascaded feature matching network for few-shot image recognition

被引:4
|
作者
Mengting CHEN [1 ]
Xinggang WANG [1 ]
Heng LUO [2 ]
Yifeng GENG [2 ]
Wenyu LIU [1 ]
机构
[1] School of Electronic Information and Communications, Huazhong University of Science and Technology
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Generally, deep networks learn to recognize a category of objects by training on a large number of annotated images accurately. However, a meta-learning problem known as a low-shot image recognition task occurs when a few images with annotations are available for learning a recognition model for a single category. Consequently, the objects in testing/query and training/support image datasets are likely to vary in terms of size, location, style, and so on. In this paper, we propose a method, cascaded feature matching network(CFMN), to solve this problem. We train the meta-learner to learn a more fine-grained and adaptive deep distance metric using feature matching block, which aligns associated features together and naturally ignores non-discriminative features. By applying the proposed feature matching block in different layers of the network, multi-scale information among the compared images is incorporated into the final cascaded matching feature, which boosts the recognition performance and generalizes better by learning on relationships. Moreover, the experiments for few-shot learning(FSL) using two standard datasets:miniImageNet and Omniglot, confirm the effectiveness of our proposed method. Besides, the multi-label fewshot task is first studied on a new data split of the COCO dataset, which further shows the superiority of the proposed feature matching network when performing the FSL in complex images.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 50 条
  • [31] Few-Shot Image Recognition with Knowledge Transfer
    Peng, Zhimao
    Li, Zechao
    Zhang, Junge
    Li, Yan
    Qi, Guo-Jun
    Tang, Jinhui
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 441 - 449
  • [32] A Two-Stage Approach to Few-Shot Learning for Image Recognition
    Das, Debasmit
    Lee, C. S. George
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3336 - 3350
  • [33] Tensor feature hallucination for few-shot learning
    Lazarou, Michalis
    Stathaki, Tania
    Avrithis, Yannis
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2050 - 2060
  • [34] Multi-level Metric Learning for Few-Shot Image Recognition
    Chen, Haoxing
    Li, Huaxiong
    Li, Yaohui
    Chen, Chunlin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I, 2022, 13529 : 243 - 254
  • [35] Dataset Bias in Few-Shot Image Recognition
    Jiang, Shuqiang
    Zhu, Yaohui
    Liu, Chenlong
    Song, Xinhang
    Li, Xiangyang
    Min, Weiqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) : 229 - 246
  • [36] Compound Prototype Matching for Few-Shot Action Recognition
    Huang, Yifei
    Yang, Lijin
    Sato, Yoichi
    COMPUTER VISION - ECCV 2022, PT IV, 2022, 13664 : 351 - 368
  • [37] Matching Compound Prototypes for Few-Shot Action Recognition
    Huang, Yifei
    Yang, Lijin
    Chen, Guo
    Zhang, Hongjie
    Lu, Feng
    Sato, Yoichi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (09) : 3977 - 4002
  • [38] Few-Shot Learning Sensitive Recognition Method Based on Prototypical Network
    Yuan, Guoquan
    Zhao, Xinjian
    Li, Liu
    Zhang, Song
    Wei, Shanming
    MATHEMATICS, 2024, 12 (17)
  • [39] Deep learning for few-shot white blood cell image classification and feature learning
    Deng, Yixiang
    Li, He
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06): : 2081 - 2091
  • [40] LEARNING RELATION BY GRAPH NEURAL NETWORK FOR SAR IMAGE FEW-SHOT LEARNING
    Yang, Rui
    Xu, Xin
    Li, Xirong
    Wang, Lei
    Pu, Fangling
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1743 - 1746