Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations

被引:0
|
作者
郭柏灵
苗长兴
机构
[1] China.
[2] Beijing 100080
[3] China
[4] China Institute of System Science
[5] Beijing Iastitute of Applied Physics and Computational Mathematics
[6] the Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Schrodinger equations; modified wave operator; final value problem; Cauchy problem;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The final value problem for the classical coupled Klein-Gordon-Schrodinger equations is studied in . This leads to the construction of the modified wave operator Ω, for certain scattered data. When initial functions belong to (Ω) which denotes the range domain of Ω, the global existence and asymptotic behavior of solutions of Cauchy problem tor the coupled Klein-Gordon-Schrodinger equations are proved.
引用
收藏
页码:1444 / 1456
页数:13
相关论文
共 50 条
  • [31] EXPONENTIAL DECAY FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING
    Almeida, A. F.
    Cavalcanti, M. M.
    Zanchetta, J. P.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 2039 - 2061
  • [32] EXPONENTIAL STABILITY FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING
    De Almeida, Adriana Flores
    Cavalcanti, Marcelo Moreira
    Zanchetta, Janaina Pedroso
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (04): : 847 - 865
  • [33] SINGULAR LIMITS OF KLEIN-GORDON-SCHRODINGER EQUATIONS TO SCHRODINGER-YUKAWA EQUATIONS
    Bao, Weizhu
    Dong, Xuanchun
    Wang, Shu
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1742 - 1769
  • [34] Regularity of the Global Attractor for the Klein-Gordon-Schrodinger Equation
    Mathematisches Institut, Universität zu Köln, D-50931 Köln, Germany
    不详
    Math Methods Appl Sci, 17-18 (1535-1554):
  • [35] Regularity of the global attractor for the Klein-Gordon-Schrodinger equation
    Lange, H
    Wang, BX
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (17) : 1535 - 1554
  • [36] Global attractor for Klein-Gordon-Schrodinger lattice system
    尹福其
    周盛凡
    殷苌茗
    肖翠辉
    Applied Mathematics and Mechanics(English Edition), 2007, (05) : 695 - 706
  • [37] Global attractor for Klein-Gordon-Schrodinger lattice system
    Yin, Fu-qi
    Zhou, Sheng-fan
    Yin, Chang-ming
    Xiao, Cui-hui
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (05) : 695 - 706
  • [38] The long-time behavior of spectral approximate for Klein-Gordon-Schrodinger equations
    Xiang, XM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (01) : 89 - 100
  • [39] Global Existence, Blow-up and Asymptotic Behavior of Solutions for a Class of Coupled Nonlinear Klein-Gordon Equations with Damping Terms
    Wu, Shun-Tang
    ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) : 75 - 95
  • [40] Spatially singular solutions for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Cao, Jianxiong
    APPLIED MATHEMATICS LETTERS, 2022, 131