EXPONENTIAL DECAY FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING

被引:6
|
作者
Almeida, A. F. [1 ]
Cavalcanti, M. M. [1 ]
Zanchetta, J. P. [1 ]
机构
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, Parana, Brazil
关键词
Klein-Gordon-Schrodinger; localized damping; exponential decay; asymptotic behavior; existence and uniqueness; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; UNIFORM DECAY; SYSTEM; STABILITY; ATTRACTORS; REGULARITY;
D O I
10.3934/cpaa.2018097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following coupled damped Klein-Gordon-Schrodinger equations are considered i psi(t) + Delta psi + i alpha b(x)(-Delta)(1/2) b(x)psi = phi psi chi(omega) in Omega x (0, infinity), (alpha > 0) phi(tt) - Delta phi + a(x)phi(t) = vertical bar psi vertical bar(2)chi(omega) in Omega x (0, infinity), where Omega is a bounded domain of R-n, n = 2, with smooth boundary Gamma and omega is a neighbourhood of partial derivative Omega satisfying the geometric control condition. Here chi(omega) represents the characteristic function of omega. Assuming that a, b is an element of W-1,W-infinity (Omega) boolean AND C-infinity (Omega) are nonnegative functions such that a(x) >= a(0) > 0 in omega and b(x) >= b(0) > 0 in omega, the exponential decay rate is proved for every regular solution of the above system. Our result generalizes substantially the previous results given by Cavalcanti et. al in the reference [7].
引用
收藏
页码:2039 / 2061
页数:23
相关论文
共 50 条
  • [1] EXPONENTIAL STABILITY FOR THE COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING
    De Almeida, Adriana Flores
    Cavalcanti, Marcelo Moreira
    Zanchetta, Janaina Pedroso
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (04): : 847 - 865
  • [2] Uniform decay for the coupled Klein-Gordon-Schrodinger equations with locally distributed damping
    Bisognin, V.
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Soriano, J.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 91 - 113
  • [3] Exponential decay for a Klein-Gordon-Schrodinger system with locally distributed damping
    Poulou, Marilena
    Filippakis, Michael
    Zanchetta, Janaina
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (02) : 1 - 19
  • [4] Exponential stability for the coupled Klein-Gordon-Schrodinger equations with locally distributed damping in unbounded domains
    Webler, Claudete M.
    Zanchetta, Janaina P.
    [J]. ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 289 - 315
  • [5] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [6] COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2.
    FUKUDA, I
    TSUTSUMI, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 358 - 378
  • [7] Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping
    V. Bisognin
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    J. Soriano
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 91 - 113
  • [8] New exact solutions of coupled Klein-Gordon-Schrodinger equations
    Liu, CS
    Du, XH
    [J]. ACTA PHYSICA SINICA, 2005, 54 (03) : 1039 - 1043
  • [9] On Coupled Klein-Gordon-Schrodinger Equations with Acoustic Boundary Conditions
    Ha, Tae Gab
    Park, Jong Yeoul
    [J]. BOUNDARY VALUE PROBLEMS, 2010,
  • [10] Stability of stationary states for the coupled Klein-Gordon-Schrodinger equations
    Ohta, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (04) : 455 - 461