Local and parallel finite element algorithms for time-dependent convection-diffusion equations

被引:0
|
作者
刘庆芳 [1 ]
侯延仁 [1 ]
机构
[1] School of Science,Xi’an Jiaotong University,Xi’an 710049,P. R. China
基金
中国国家自然科学基金;
关键词
local and parallel algorithms; finite element method; convection-diffusion equations;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
Local and parallel finite element algorithms based on two-grid discretization for the time-dependent convection-diffusion equations are presented. These algorithms are motivated by the observation that, for a solution to the convection-diffusion problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedures. Hence, these local and parallel algorithms only involve one small original problem on the coarse mesh and some correction problems on the local fine grid. One technical tool for the analysis is the local a priori estimates that are also obtained. Some numerical examples are given to support our theoretical analysis.
引用
收藏
页码:787 / 794
页数:8
相关论文
共 50 条
  • [41] Robustness of an elementwise parallel finite element method for convection-diffusion problems
    Layton, WJ
    Maubach, JM
    Rabier, PJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06): : 1870 - 1891
  • [42] A CONSERVATIVE FLUX OPTIMIZATION FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Liu, Yujie
    Wang, Junping
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1238 - 1262
  • [43] A DIFFERENCE FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS IN CYLINDRICAL DOMAINS
    Shi, Chenhong
    He, Yinnian
    Sheen, Dongwoo
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 407 - 430
  • [44] An analysis of the weak Galerkin finite element method for convection-diffusion equations
    Zhang, Tie
    Chen, Yanli
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 612 - 621
  • [45] Finite element resolution of convection-diffusion equations with interior and boundary layers
    Olmos, F
    Chinesta, F
    Torres, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 22 (07) : 643 - 671
  • [46] FINITE-ELEMENT PROCEDURES FOR TIME-DEPENDENT CONVECTION DIFFUSION REACTION SYSTEMS
    TEZDUYAR, TE
    PARK, YJ
    DEANS, HA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1987, 7 (10) : 1013 - 1033
  • [47] H 1 space-time discontinuous finite element method for convection-diffusion equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (03) : 371 - 384
  • [48] Accurate approximations to time-dependent nonlinear convection-diffusion problems
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1137 - 1158
  • [49] H~1 space-time discontinuous finite element method for convection-diffusion equations
    何斯日古楞
    李宏
    刘洋
    Applied Mathematics and Mechanics(English Edition), 2013, 34 (03) : 371 - 384
  • [50] A stable explicit method for time-dependent convection-diffusion problems
    Ruas, V.
    Brasil, A. C. P., Jr.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 480 - +