A CONSERVATIVE FLUX OPTIMIZATION FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS

被引:4
|
作者
Liu, Yujie [1 ]
Wang, Junping [2 ]
Zou, Qingsong [3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Natl Sci Fdn, Div Math Sci, Alexandria, VA 22314 USA
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
conservative flux; primal-dual weak Galerkin; finite element methods; finite volume method; DISCONTINUOUS GALERKIN METHODS; VOLUME METHODS; APPROXIMATION; ACCURACY; SCHEMES;
D O I
10.1137/17M1153595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a new finite element method for convection-diffusion equations by enhancing the continuous finite element space with a flux space for flux approximations that preserve the important mass conservation locally on a prescribed set of control elements. The numerical scheme is based on a constrained flux optimization approach where the constraint was given by local mass conservation equations and the flux error is minimized in a prescribed topology/metric. This new scheme provides numerical approximations for both the primal and the flux variables. It is shown that the numerical approximations for the primal and the flux variables are convergent with optimal order in some discrete Sobolev norms. Numerical experiments are conducted to confirm the convergence theory. Furthermore, the new scheme was employed in the computational simulation of a simplified two-phase flow problem in highly heterogeneous porous media. The numerical results illustrate an excellent performance of the method in scientific computing.
引用
收藏
页码:1238 / 1262
页数:25
相关论文
共 50 条
  • [1] A high order conservative flux optimization finite element method for steady convection-diffusion equations
    Liu, Yujie
    Feng, Yue
    Zhang, Ran
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 425
  • [2] DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Abdellatif Agouzal (Laboratoire de Mathematiques Appliquees
    JournalofComputationalMathematics, 2000, (06) : 639 - 644
  • [3] Discontinuous finite element method for convection-diffusion equations
    Agouzal, A
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 639 - 644
  • [4] A Hermite Finite Element Method for Convection-diffusion Equations
    Ruas, V.
    Trales, P.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2213 - 2216
  • [5] Mass conservative characteristic finite difference method for convection-diffusion equations
    Zhou, Zhongguo
    Hang, Tongtong
    Jiang, Tengfei
    Zhang, Qi
    Tang, Huiguo
    Chen, Xiangdong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (10) : 2115 - 2136
  • [6] The Finite Element Method Solution of Variable Diffusion Coefficient Convection-Diffusion Equations
    Aydin, Selcuk Han
    Ciftci, Canan
    FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 228 - 231
  • [7] A DIFFERENCE FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS IN CYLINDRICAL DOMAINS
    Shi, Chenhong
    He, Yinnian
    Sheen, Dongwoo
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 407 - 430
  • [8] An analysis of the weak Galerkin finite element method for convection-diffusion equations
    Zhang, Tie
    Chen, Yanli
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 612 - 621
  • [9] A monotone finite element scheme for convection-diffusion equations
    Xu, JC
    Zikatanov, L
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1429 - 1446
  • [10] A PETROV-GALERKIN FINITE ELEMENT METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 481 - 503