The asymptotic existence of frames with a pair of orthogonal frame resolutions

被引:0
|
作者
Changyuan Wang [1 ,2 ]
Yanxun Chang [1 ]
Tao Feng [1 ]
机构
[1] Department of Mathematics,Beijing Jiaotong University
[2] School of Mathematics and Statistics,Zaozhuang University
基金
中国国家自然科学基金;
关键词
frames; orthogonal frame resolutions; asymptotic existence; generalized Howell designs; multiply constant-weight codes;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Motivated by the applications to generalized Howell designs and multiply constant-weight codes, we establish an asymptotic existence theorem for(k, λ)-frames of type g;with a pair of orthogonal frame resolutions via decompositions of edge-colored complete digraphs into prescribed edge-colored subgraphs.
引用
收藏
页码:1839 / 1850
页数:12
相关论文
共 50 条
  • [41] Convolutional frames and the frame potential
    Fickus, M
    Johnson, BD
    Kornelson, K
    Okoudjou, KA
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 77 - 91
  • [42] Frame Potentials and the Geometry of Frames
    Bodmann, Bernhard G.
    Haas, John
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (06) : 1344 - 1383
  • [43] THE DUALITY OF THE FRAME PROBLEM: ABOUT INTERPRETATIONS AND RESOLUTIONS
    Ines Silenzi, Maria
    TOPICOS-REVISTA DE FILOSOFIA, 2014, (47): : 89 - 112
  • [44] Orthogonal frames and their dual frames in L2(Rd)
    Liu, Zhanwei
    Ren, Yudong
    Wu, Guochang
    Journal of Information and Computational Science, 2012, 9 (05): : 1329 - 1336
  • [45] On the existence of equiangular tight frames
    Sustik, Matyas A.
    Tropp, Joel A.
    Dhillon, Inderjit S.
    Heath, Robert W., Jr.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 619 - 635
  • [46] THE EXISTENCE OF HOMOTOPY RESOLUTIONS OF N-COMPLEXES
    Yang, Xiaoyan
    Wang, Junpeng
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2015, 17 (02) : 291 - 316
  • [47] Existence of Gorenstein projective resolutions and Tate cohomology
    Jorgensen, Peter
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (01) : 59 - 76
  • [48] On the (non) existence of symplectic resolutions of linear quotients
    Bellamy, Gwyn
    Schedler, Travis
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (06) : 1537 - 1564
  • [49] OBSTRUCTIONS TO THE EXISTENCE OF A MULTIPLICATIVE STRUCTURE ON MINIMAL RESOLUTIONS
    AVRAMOV, LL
    RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (03) : 141 - 142
  • [50] THE EXISTENCE OF GENERIC FREE RESOLUTIONS AND RELATED OBJECTS
    BRUNS, W
    MATHEMATICA SCANDINAVICA, 1984, 55 (01) : 33 - 46