On the (non) existence of symplectic resolutions of linear quotients

被引:9
|
作者
Bellamy, Gwyn [1 ]
Schedler, Travis [2 ]
机构
[1] Univ Glasgow, Univ Gardens, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
[2] Imperial Coll, Dept Math, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
symplectic resolution; symplectic smoothing; symplectic reflection algebra; Poisson variety; quotient singularity; McKay correspondence; POISSON DEFORMATIONS; SINGULARITIES; VARIETIES; ALGEBRAS;
D O I
10.4310/MRL.2016.v23.n6.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of symplectic resolutions of quotient singularities V/G, where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form K (sic) S-2 whereK < SL2(C), for which the corresponding quotient singularity admits a projective symplectic resolution. As a consequence, for dim V not equal 4, we classify all symplectically irreducible quotient singularities V/G admitting a projective symplectic resolution, except for at most four explicit singularities, that occur in dimensions at most 10, for which the question of existence remains open.
引用
收藏
页码:1537 / 1564
页数:28
相关论文
共 50 条
  • [1] On the existence of symplectic resolutions of symplectic reductions
    Tanja Becker
    Mathematische Zeitschrift, 2010, 265 : 343 - 363
  • [2] On the existence of symplectic resolutions of symplectic reductions
    Becker, Tanja
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) : 343 - 363
  • [3] Intersection cohomology of S1 symplectic quotients and small resolutions
    Lerman, E
    Tolman, S
    DUKE MATHEMATICAL JOURNAL, 2000, 103 (01) : 79 - 99
  • [4] AN IMPOSSIBILITY THEOREM FOR LINEAR SYMPLECTIC CIRCLE QUOTIENTS
    Herbig, Hans-Christian
    Seaton, Christopher
    REPORTS ON MATHEMATICAL PHYSICS, 2015, 75 (03) : 303 - 331
  • [5] Monomial ideals with linear quotients whose Taylor resolutions are minimal
    Okudaira, Munetaka
    Takayama, Yukihide
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (02): : 161 - 167
  • [6] Arbitrary Lexsegment ideals with linear quotients and their minimal free resolutions
    Sorrenti, Loredana
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (04): : 355 - 369
  • [7] The existence of symplectic general linear methods
    Butcher, J. C.
    Hewitt, L. L.
    NUMERICAL ALGORITHMS, 2009, 51 (01) : 77 - 84
  • [8] The existence of symplectic general linear methods
    J. C. Butcher
    L. L. Hewitt
    Numerical Algorithms, 2009, 51 : 77 - 84
  • [9] Symplectic quotients have symplectic singularities
    Herbig, Hans-Christian
    Schwarz, Gerald W.
    Seaton, Christopher
    COMPOSITIO MATHEMATICA, 2020, 156 (03) : 613 - 646
  • [10] Symplectic Resolutions for Conical Symplectic Varieties
    Brion, Michel
    Fu, Baohua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) : 4335 - 4343