Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China

被引:0
|
作者
HUANG XiaoFeng [1 ]
YUN Hui [1 ]
GONG ZhaoHeng [1 ]
LI Xiang [1 ]
HE LingYan [1 ]
ZHANG YuanHang [2 ]
HU Min [2 ]
机构
[1] Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School
[2] State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering,Peking University
基金
中国国家自然科学基金;
关键词
PM2.5; source apportionment; secondary organic aerosol(SOA);
D O I
暂无
中图分类号
X513 [粒状污染物];
学科分类号
0706 ; 070602 ;
摘要
PM2.5 is the key pollutant in atmospheric pollution in China.With new national air quality standards taking effect,PM2.5 has become a major issue for future pollution control.To effectively prevent and control PM2.5,its emission sources must be precisely and thoroughly understood.However,there are few publications reporting comprehensive and systematic results of PM2.5 source apportionment in the country.Based on PM2.5 sampling during 2009 in Shenzhen and follow-up investigation,positive matrix factorization(PMF)analysis has been carried out to understand the major sources and their temporal and spatial variations.The results show that in urban Shenzhen(University Town site),annual mean PM2.5 concentration was 42.2μg m?3,with secondary sulfate,vehicular emission,biomass burning and secondary nitrate as major sources;these contributed30.0%,26.9%,9.8%and 9.3%to total PM2.5,respectively.Other sources included high chloride,heavy oil combustion,sea salt,dust and the metallurgical industry,with contributions between 2%–4%.Spatiotemporal variations of various sources show that vehicular emission was mainly a local source,whereas secondary sulfate and biomass burning were mostly regional.Secondary nitrate had both local and regional sources.Identification of secondary organic aerosol(SOA)has always been difficult in aerosol source apportionment.In this study,the PMF model and organic carbon/elemental carbon(OC/EC)ratio method were combined to estimate SOA in PM2.5.The results show that in urban Shenzhen,annual SOA mass concentration was 7.5μg m?3,accounting for 57%of total organic matter,with precursors emitted from vehicles as the major source.This work can serve as a case study for further in-depth research on PM2.5 pollution and source apportionment in China.
引用
收藏
页码:1352 / 1362
页数:11
相关论文
共 50 条
  • [31] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Fan Huang
    Jiabin Zhou
    Nan Chen
    Yuhua Li
    Kuan Li
    Shuiping Wu
    Journal of Atmospheric Chemistry, 2019, 76 : 245 - 262
  • [32] Source apportionment and elemental composition of PM2.5 in Chengdu, China
    Tang, Ya
    Li, Youping
    Zhou, Hong
    Guo, Jialing
    Nature Environment and Pollution Technology, 2019, 18 (01): : 329 - 334
  • [33] Source apportionment for,urban PM10 and PM2.5 in the Beijing area
    Zhang Wei
    Guo JingHua
    Sun YeLe
    Yuan Hui
    Zhuang GuoShun
    Zhuang YaHui
    Hao ZhengPing
    CHINESE SCIENCE BULLETIN, 2007, 52 (05): : 608 - 615
  • [34] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang, Xiaozhen
    Bi, Xiaohui
    Xu, Hong
    Wu, Jianhui
    Zhang, Yufen
    Feng, Yinchang
    ATMOSPHERIC RESEARCH, 2017, 190 : 1 - 9
  • [35] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang X.
    Bi X.
    Xu H.
    Wu J.
    Zhang Y.
    Feng Y.
    Atmospheric Research, 2017, 190 : 1 - 9
  • [36] PM2.5 pollution characteristics and source apportionment in Handan urban area
    Duan, Wen-Jiao
    Zhou, Ying
    Li, Ji-Feng
    Cheng, Shui-Yuan
    Duan, Ran
    Zhongguo Huanjing Kexue/China Environmental Science, 2019, 39 (10): : 4108 - 4116
  • [37] Chemical Characteristics and Source Apportionment of PM2.5 in Urban Area of Beijing
    An X.-X.
    Cao Y.
    Wang Q.
    Fu J.-M.
    Wang C.-J.
    Jing K.
    Liu B.-X.
    Huanjing Kexue/Environmental Science, 2022, 43 (05): : 2251 - 2261
  • [38] Chemical Composition and Source Apportionment of PM2.5 in Urban Areas of Xiangtan, Central South China
    Ma, Xiaoyao
    Xiao, Zhenghui
    He, Lizhi
    Shi, Zongbo
    Cao, Yunjiang
    Tian, Zhe
    Tuan Vu
    Liu, Jisong
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (04)
  • [39] Development of source profiles and their application in source apportionment of PM2.5 in Xiamen, China
    Zhang, Ningning
    Zhuang, Mazhan
    Tian, Jie
    Tian, Pengshan
    Zhang, Jieru
    Wang, Qiyuan
    Zhou, Yaqing
    Huang, Rujin
    Zhu, Chongshu
    Zhang, Xuemin
    Cao, Junji
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2016, 10 (05)
  • [40] Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington
    Maykut, NN
    Lewtas, J
    Kim, E
    Larson, TV
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (22) : 5135 - 5142