Chemical Composition and Source Apportionment of PM2.5 in Urban Areas of Xiangtan, Central South China

被引:17
|
作者
Ma, Xiaoyao [1 ]
Xiao, Zhenghui [1 ]
He, Lizhi [2 ]
Shi, Zongbo [3 ]
Cao, Yunjiang [1 ]
Tian, Zhe [3 ,4 ]
Tuan Vu [3 ]
Liu, Jisong [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Resource Environm & Safety Engn, Xiangtan 411201, Peoples R China
[2] Atmospher Environm Monitoring Stn Xiangtan, Xiangtan 411100, Peoples R China
[3] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
[4] Epsom Gateways, Epsom KT18 5AL, Surrey, England
基金
中国国家自然科学基金;
关键词
PM2; 5; chemical components; source apportionment; positive matrix factorization (PMF); Xiangtan City; SOLUBLE INORGANIC-IONS; TIANJIN-HEBEI REGION; YANGTZE-RIVER DELTA; AMBIENT PM2.5; SEASONAL CHARACTERISTICS; POLLUTION EPISODES; PARTICULATE MATTER; HAZE EPISODES; AEROSOL; CITY;
D O I
10.3390/ijerph16040539
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Xiangtan, South China, is characterized by year-round high relative humidity and very low wind speeds. To assess levels of PM2.5, daily samples were collected from 2016 to 2017 at two urban sites. The mass concentrations of PM2.5 were in the range of 30-217 mu g/m(3), with the highest concentrations in winter and the lowest in spring. Major water-soluble ions (WSIIs) and total carbon (TC) accounted for 58-59% and 21-24% of the PM2.5 mass, respectively. Secondary inorganic ions (SO42-, NO3-, and NH4+) dominated the WSIIs and accounted for 73% and 74% at the two sites. The concentrations of K, Fe, Al, Sb, Ca, Zn, Mg, Pb, Ba, As, and Mn in the PM2.5 at the two sites were higher than 40 ng/m(3), and decreased in the order of winter > autumn > spring. Enrichment factor analysis indicates that Co, Cu, Zn, As, Se, Cd, Sb, Tl, and Pb mainly originates from anthropogenic sources. Source apportionment analysis showed that secondary inorganic aerosols, vehicle exhaust, coal combustion and secondary aerosols, fugitive dust, industrial emissions, steel industry are the major sources of PM2.5, contributing 25-27%, 21-22%, 19-21%, 16-18%, 6-9%, and 8-9% to PM2.5 mass.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China
    Liu, Gang
    Li, Jiuhai
    Wu, Dan
    Xu, Hui
    [J]. PARTICUOLOGY, 2015, 18 : 135 - 143
  • [2] Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou,China
    Xionghui Qiu
    Lei Duan
    Jian Gao
    Shulan Wang
    Fahe Chai
    Jun Hu
    Jingqiao Zhang
    Yaru Yun
    [J]. Journal of Environmental Sciences, 2016, 40 (02) : 75 - 83
  • [3] Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China
    Qiu, Xionghui
    Duan, Lei
    Gao, Jian
    Wang, Shulan
    Chai, Fahe
    Hu, Jun
    Zhang, Jingqiao
    Yun, Yaru
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2016, 40 : 75 - 83
  • [4] PM2.5 in an industrial district of Zhengzhou,China:Chemical composition and source apportionment
    Ningbo Geng
    Jia Wang
    Yifei Xu
    Wending Zhang
    Chun Chen
    Ruiqin Zhang
    [J]. Particuology, 2013, 11 (01) : 99 - 109
  • [5] Chemical Composition and Source Apportionment of PM2.5 in a Border City in Southwest China
    Shi, Jianwu
    Zhao, Chenyang
    Wang, Zhijun
    Pang, Xiaochen
    Zhong, Yaoqian
    Han, Xinyu
    Ning, Ping
    [J]. ATMOSPHERE, 2022, 13 (01)
  • [6] PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment
    Geng, Ningbo
    Wang, Jia
    Xu, Yifei
    Zhang, Wending
    Chen, Chun
    Zhang, Ruiqin
    [J]. PARTICUOLOGY, 2013, 11 (01) : 99 - 109
  • [7] Chemical composition and source apportionment of Toronto summertime urban fine aerosol (PM2.5)
    Tsai, J
    Owega, S
    Evans, G
    Jervis, R
    Fila, M
    Tan, P
    Malpica, O
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2004, 259 (01) : 193 - 197
  • [8] Chemical composition and source apportionment of Toronto summertime urban fine aerosol (PM2.5)
    J. Tsai
    S. Owega
    G. Evans
    R. Jervis
    M. Fila
    P. Tan
    O. Malpica
    [J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259 : 193 - 197
  • [9] Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China
    Tan, Jihua
    Zhang, Leiming
    Zhou, Xueming
    Duan, Jingchun
    Li, Yan
    Hu, Jingnan
    He, Kebin
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 601 : 1743 - 1752
  • [10] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Huang, Fan
    Zhou, Jiabin
    Chen, Nan
    Li, Yuhua
    Li, Kuan
    Wu, Shuiping
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 2019, 76 (03) : 245 - 262