A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces

被引:0
|
作者
Hongzhi Tong [1 ]
Michael Ng [2 ]
机构
[1] School of Statistics, University of International Business and Economics
[2] Institute of Data Science and Department of Mathematics, The University of Hong Kong
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
070104 ;
摘要
We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm, we use an early stopping technique, instead of the classical Tikhonov regularization, to prevent the iteration from an overfitting function.Under mild conditions, we obtain upper bounds, essentially matching the known minimax lower bounds, for excess prediction risk. An almost sure convergence is also established for the proposed algorithm.
引用
收藏
页码:280 / 295
页数:16
相关论文
共 50 条
  • [1] Partially functional linear regression in reproducing kernel Hilbert spaces
    Cui, Xia
    Lin, Hongmei
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [2] Minimax prediction for functional linear regression with functional responses in reproducing kernel Hilbert spaces
    Lian, Heng
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 395 - 402
  • [3] Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces
    Li, Rui
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 : 162 - 170
  • [4] Faster convergence rate for functional linear regression in reproducing kernel Hilbert spaces
    Zhang, Fode
    Zhang, Weiping
    Li, Rui
    Lian, Heng
    [J]. STATISTICS, 2020, 54 (01) : 167 - 181
  • [5] Structured functional additive regression in reproducing kernel Hilbert spaces
    Zhu, Hongxiao
    Yao, Fang
    Zhang, Hao Helen
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (03) : 581 - 603
  • [6] Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces
    Marinho, Zita
    Boots, Byron
    Dragan, Anca
    Byravan, Arunkumar
    Gordon, Geoffrey J.
    Srinivasa, Siddhartha
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XII, 2016,
  • [7] A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION
    Yuan, Ming
    Cai, T. Tony
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3412 - 3444
  • [8] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [9] Regression models for functional data by reproducing kernel Hilbert spaces methods
    Preda, Cristian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) : 829 - 840
  • [10] Partially linear functional quantile regression in a reproducing kernel Hilbert space
    Zhou, Yan
    Zhang, Weiping
    Lin, Hongmei
    Lian, Heng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (04) : 789 - 803