A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces

被引:0
|
作者
Hongzhi Tong [1 ]
Michael Ng [2 ]
机构
[1] School of Statistics, University of International Business and Economics
[2] Institute of Data Science and Department of Mathematics, The University of Hong Kong
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O177.1 [希尔伯特空间及其线性算子理论];
学科分类号
070104 ;
摘要
We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm, we use an early stopping technique, instead of the classical Tikhonov regularization, to prevent the iteration from an overfitting function.Under mild conditions, we obtain upper bounds, essentially matching the known minimax lower bounds, for excess prediction risk. An almost sure convergence is also established for the proposed algorithm.
引用
收藏
页码:280 / 295
页数:16
相关论文
共 50 条
  • [21] Stochastic Policy Gradient Ascent in Reproducing Kernel Hilbert Spaces
    Paternain, Santiago
    Bazerque, Juan Andres
    Small, Austin
    Ribeiro, Alejandro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (08) : 3429 - 3444
  • [22] On-line regression competitive with reproducing kernel Hilbert spaces
    Vovk, Vladimir
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 452 - 463
  • [23] Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space
    Li, Ting
    Zhu, Huichen
    Li, Tengfei
    Zhu, Hongtu
    [J]. BIOMETRICS, 2023, 79 (03) : 1880 - 1895
  • [24] Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
    Mutny, Mojmir
    Krause, Andreas
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Optimal prediction for high-dimensional functional quantile regression in reproducing kernel Hilbert spaces
    Yang, Guangren
    Liu, Xiaohui
    Lian, Heng
    [J]. JOURNAL OF COMPLEXITY, 2021, 66
  • [26] A new kernel method for the uniform approximation in reproducing kernel Hilbert spaces
    Themistoclakis, Woula
    Van Barel, Marc
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 153
  • [27] Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces
    Lian, Heng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (04): : 597 - 606
  • [28] Functional additive expectile regression in the reproducing kernel Hilbert space
    Liu, Yuzi
    Peng, Ling
    Liu, Qing
    Lian, Heng
    Liu, Xiaohui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [29] A FUNCTIONAL DECOMPOSITION OF FINITE BANDWIDTH REPRODUCING KERNEL HILBERT SPACES
    Adams, Gregory T.
    Wagner, Nathan A.
    [J]. OPERATORS AND MATRICES, 2021, 15 (04): : 1521 - 1539
  • [30] SAMPLED FORMS OF FUNCTIONAL PCA IN REPRODUCING KERNEL HILBERT SPACES
    Amini, Arash A.
    Wainwright, Martin J.
    [J]. ANNALS OF STATISTICS, 2012, 40 (05): : 2483 - 2510