Maximal function characterizations of Hardy spaces on RD-spaces and their applications

被引:0
|
作者
Loukas GRAFAKOS [1 ]
机构
[1] Department of Mathematics, University of Missouri
基金
美国国家科学基金会;
关键词
space of homogeneous type; Caldero′n reproducing formula; space of test function; maximal function; Hardy space; atom; Littlewood-Paley function; sublinear operator; quasi- Banach space;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a "dimension" n. For α∈ (0, ∞) denote by Hαp(X ), Hdp(X ), and H?,p(X ) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calder′on reproducing formula, it is shown that all these Hardy spaces coincide with Lp(X ) when p ∈ (1, ∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H*,p(X ) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1), 1], it is proved that the space H?,p(X ), the Hardy space Hp(X ) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman and Weiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from Hp(X ) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.
引用
下载
收藏
页码:2253 / 2284
页数:32
相关论文
共 50 条
  • [31] MAXIMAL CHARACTERIZATIONS OF HERZ TYPE HARDY SPACES ON HOMOGENEOUS GROUPS
    Yinsheng Jiang Xinjiang University
    Analysis in Theory and Applications, 2005, (04) : 301 - 310
  • [32] Boundedness of paraproduct operators on RD-spaces
    GRAFAKOS Loukas
    Science China Mathematics, 2010, 53 (08) : 2097 - 2114
  • [33] Boundedness of paraproduct operators on RD-spaces
    Loukas Grafakos
    LiGuang Liu
    DaChun Yang
    Science China Mathematics, 2010, 53 : 2097 - 2114
  • [34] Boundedness of paraproduct operators on RD-spaces
    Grafakos, Loukas
    Liu LiGuang
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2097 - 2114
  • [35] Atomic characterizations of variable Hardy spaces on domains and their applications
    Liu, Xiong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (01)
  • [36] Atomic characterizations of variable Hardy spaces on domains and their applications
    Xiong Liu
    Banach Journal of Mathematical Analysis, 2021, 15
  • [37] Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators
    Zhang, Junqiang
    Cao, Jun
    Jiang, Renjin
    Yang, Dachun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (05): : 1161 - 1200
  • [38] Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrodinger operators
    Yang, Dachun
    Yang, Dongyong
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (05) : 1203 - 1232
  • [39] Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups
    Renjin Jiang
    Xiaojuan Jiang
    Dachun Yang
    Revista Matemática Complutense, 2011, 24 : 251 - 275
  • [40] THE INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS OF WEIGHTED HARDY SPACES
    Wang, Hua
    Liu, Heping
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (02) : 367 - 381