Atomic characterizations of variable Hardy spaces on domains and their applications

被引:0
|
作者
Xiong Liu
机构
[1] Lanzhou University,School of Mathematics and Statistics
关键词
Variable Hardy space; Atom; Maximal function; Variable BMO space; Duality; Domain; 42B30; 42B25; 46A20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} be a proper open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} and p(·):Ω→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot ):\varOmega \rightarrow (0,\infty )$$\end{document} a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the variable Hardy space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} by the radial maximal function and then characterize the space Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document} via grand maximal functions and atoms. Moreover, the author introduces the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space BMOp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega )$$\end{document} and the variable Hölder space Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. As applications of atomic characterizations of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}, the author shows that Λp(·),q,d(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}(\varOmega )$$\end{document} is the dual space of Hp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )$$\end{document}. In particular, when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a bounded Lipschitz domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, the author further obtains Hp(·)(Ω)=Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}(\varOmega )=H^{p(\cdot )}_{r}(\varOmega )$$\end{document}, BMOp(·)(Ω)=BMOzp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}(\varOmega ) =\rm {BMO}^{p(\cdot )}_z(\varOmega )$$\end{document} and Λp(·),q,0(Ω)=Λzp(·),q,0(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,0}(\varOmega )=\varLambda ^{p(\cdot ),\,q,\,0}_z(\varOmega )$$\end{document} with equivalent (quasi-)norm. Here the variable Hardy space Hrp(·)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}_{r}(\varOmega )$$\end{document} is defined via restricting arbitrary elements of Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, BMOzp(·)(Ω):={f∈BMOp(·)(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}_z(\varOmega ):=\{f\in \rm {BMO}^{p(\cdot )}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document} and Λzp(·),q,d(Ω):={f∈Λp(·),q,d(Rn):supp(f)⊂Ω¯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}_z(\varOmega ): =\{f\in \varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n):\ {{\,\rm{supp}\,}} (f)\subset {\overline{\varOmega }}\}$$\end{document}, where Hp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{p(\cdot )}({\mathbb {R}}^n)$$\end{document}, BMOp(·)(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}^{p(\cdot )}({\mathbb {R}}^n)$$\end{document} and Λp(·),q,d(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda ^{p(\cdot ),\,q,\,d}({\mathbb {R}}^n)$$\end{document}, respectively, denote the variable Hardy space, the variable BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm {BMO}$$\end{document} space and the variable Hölder space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, and Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\varOmega }}$$\end{document} denotes the closure of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. The above results extend the main results in Miyachi (Studia Math 95:205–228, 1990) to the case of variable exponents.
引用
下载
收藏
相关论文
共 50 条
  • [1] Atomic characterizations of variable Hardy spaces on domains and their applications
    Liu, Xiong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (01)
  • [2] Littlewood–Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications
    Jun Liu
    Ferenc Weisz
    Dachun Yang
    Wen Yuan
    Journal of Fourier Analysis and Applications, 2019, 25 : 874 - 922
  • [3] REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF Rn
    Liu, Xiong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 745 - 765
  • [4] Littlewood-Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy-Lorentz Spaces and Their Applications
    Liu, Jun
    Weisz, Ferenc
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 874 - 922
  • [5] Atomic Decompositions of Localized Hardy Spaces with Variable Exponents and Applications
    Tan, Jian
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) : 799 - 827
  • [6] Atomic Decompositions of Localized Hardy Spaces with Variable Exponents and Applications
    Jian Tan
    The Journal of Geometric Analysis, 2019, 29 : 799 - 827
  • [7] Weighted variable Hardy spaces on domains
    Melkemi, Oussama
    Saibi, Khedoudj
    Mokhtari, Zouhir
    ADVANCES IN OPERATOR THEORY, 2021, 6 (03)
  • [8] Weighted variable Hardy spaces on domains
    Oussama Melkemi
    Khedoudj Saibi
    Zouhir Mokhtari
    Advances in Operator Theory, 2021, 6
  • [9] Wavelet Characterizations of Variable Anisotropic Hardy Spaces
    Yao He
    Yong Jiao
    Jun Liu
    Acta Mathematica Sinica, English Series, 2025, 41 (1) : 304 - 326
  • [10] Wavelet Characterizations of Variable Anisotropic Hardy Spaces
    Yao He
    Yong Jiao
    Jun Liu
    Acta Mathematica Sinica,English Series, 2025, (01) : 304 - 326