On the Existence of Ground State Solutions to a Quasilinear Schr?dinger Equation involving p-Laplacian

被引:0
|
作者
Ji-xiu WANG [1 ]
Qi GAO [2 ]
机构
[1] School of Mathematics and Statistics, Hubei University of Arts and Science
[2] Department of Mathematics, School of Science, Wuhan University of Technology
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
We consider the following quasilinear Schr?dinger equation involving p-Laplacian ■ in RN,where N > p > 1, η ≥p/(2(p-1)), p < q < 2ηp*(μ), p*(s) =(p(N-s))/(N-p), and λ, μ, ν are parameters with λ > 0,μ, ν ∈ [0, p). Via the Mountain Pass Theorem and the Concentration Compactness Principle, we establish the existence of nontrivial ground state solutions for the above problem.
引用
收藏
页码:381 / 395
页数:15
相关论文
共 50 条