ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN

被引:3
|
作者
Trinh Thi Minh Hang [1 ]
Hoang Quoc Toan [2 ]
机构
[1] Hanoi Univ Civil Engn, Dept Informat, Hanoi, Vietnam
[2] Hanoi Univ Sci, Dept Math, Hanoi, Vietnam
关键词
Neumann problem; p-Laplacian; Mountain pass theorem; the weakly continuously differentiable functional; MULTIPLICITY;
D O I
10.4134/BKMS.2011.48.6.1169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form -div(h(x)vertical bar del u vertical bar(p-2)del u) + b(x)vertical bar u vertical bar(p-2)u = f(x,u), p >= 2 in an unbounded domain Omega subset of R(N), N >= 3, with sufficiently smooth bounded boundary partial derivative Omega, where h(x) is an element of L(loc)(1)((Omega) over bar), (Omega) over bar = Omega boolean OR partial derivative Omega, h(x) >= 1 for all x is an element of Omega. The proof of main results rely essentially on the arguments of variational method.
引用
收藏
页码:1169 / 1182
页数:14
相关论文
共 50 条