On Existence and Multiplicity of Solutions for Elliptic Equations Involving the p-Laplacian

被引:0
|
作者
Xian Wu
Jilin Chen
机构
[1] Yunnan Normal University,Department of Mathematics
[2] Zhaotong Teacher’s College,Department of Mathematics
关键词
Critical point; -Laplacian; Sobolev’s embedding; Dirichlet problem; Neumann problem; 35J20; 35J70; 35P05; 35P30; 34B15; 58E05; 47H04;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the following Dirichlet problem and Neumann problem involving the p-Laplacian (1.λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {\begin{array}{*{20}l} { - \Delta _p (u) = \lambda\, f(x,u),\quad in \quad \Omega } \\ {u = o,\quad on\quad \partial \Omega } \\ \end{array}} \right.$$\end{document} and (2.λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {\begin{array}{*{20}l} { - \Delta _p (u) + a(x)|u|^{p - 2} u = \lambda f(x,u), \quad in\quad \Omega } \\ {\frac{{\partial u}}{{\partial n}} = 0,\quad on\quad \partial \Omega } \\ \end{array}} \right. $$\end{document} are studied and some new multiplicity results of solutions for systems (1.λ) and (2.λ) are obtained. Moreover, by using the KKM principle we give also two new existence results of solutions for systems (1.1) and (2.1).
引用
收藏
页码:745 / 755
页数:10
相关论文
共 50 条