Aharonov-Anandan Phases in Lipkin-Meskov-Glick Model

被引:0
|
作者
杨大宝 [1 ]
陈景灵 [1 ]
机构
[1] Theoretical Physics Division,Chern Institute of Mathematics,Nankai University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
geometric phase; spin chain models; calculations for few-body systems;
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
摘要
In the system of several interacting spins,geometric phases have been researched intensively.However,the studies are mainly focused on the adiabatic case (Berry phase),so it is necessary for us to study the non-adiabaticcounterpart (Aharonov and Anandan phase).In this paper,we analyze both the non-degenerate and degenerate geometricphase of Lipkin-Meskov-Glick type model,which has many application in Bose-Einstein condensates and entanglementtheory.Furthermore,in order to calculate degenerate geometric phases,the Floquet theorem and decomposition ofoperator are generalized.And the general formula is achieved.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [41] AN ANALYSIS OF THE AHARONOV-ANANDAN-VAIDMAN MODEL
    GHOSE, P
    HOME, D
    FOUNDATIONS OF PHYSICS, 1995, 25 (07) : 1105 - 1109
  • [42] Aharonov-Anandan quantum phase from a fixed vector field background and an axial magnetic field around a cavity
    Bakke, K.
    Belich, H.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2025, 12 (01)
  • [43] Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
    Campbell, Steve
    De Chiara, Gabriele
    Paternostro, Mauro
    Palma, G. Massimo
    Fazio, Rosario
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [44] Multiparticle entanglement in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [45] The Aharonov-Anandan phase and geometric double-quantum excitation in strongly coupled nuclear spin pairs
    Bengs, Christian
    Sabba, Mohamed
    Levitt, Malcolm H.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (12):
  • [46] On the exact solutions of the Lipkin-Meshkov-Glick model
    Debergh, N
    Stancu, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (15): : 3265 - 3276
  • [47] Universality of the negativity in the Lipkin-Meshkov-Glick model
    Wichterich, Hannu
    Vidal, Julien
    Bose, Sougato
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [48] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    Du Long
    Zhang Wen-Xin
    Ding Jia-Yan
    Wang Guo-Xiang
    Hou Jing-Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 61 - 66
  • [49] Spectral Gap of the Antiferromagnetic Lipkin–Meshkov–Glick Model
    R. G. Unanyan
    Theoretical and Mathematical Physics, 2018, 195 : 718 - 728
  • [50] Thermodynamical limit of the Lipkin-Meshkov-Glick model
    Ribeiro, Pedro
    Vidal, Julien
    Mosseri, Remy
    PHYSICAL REVIEW LETTERS, 2007, 99 (05)