Aharonov-Anandan Phases in Lipkin-Meskov-Glick Model

被引:0
|
作者
杨大宝 [1 ]
陈景灵 [1 ]
机构
[1] Theoretical Physics Division,Chern Institute of Mathematics,Nankai University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
geometric phase; spin chain models; calculations for few-body systems;
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
摘要
In the system of several interacting spins,geometric phases have been researched intensively.However,the studies are mainly focused on the adiabatic case (Berry phase),so it is necessary for us to study the non-adiabaticcounterpart (Aharonov and Anandan phase).In this paper,we analyze both the non-degenerate and degenerate geometricphase of Lipkin-Meskov-Glick type model,which has many application in Bose-Einstein condensates and entanglementtheory.Furthermore,in order to calculate degenerate geometric phases,the Floquet theorem and decomposition ofoperator are generalized.And the general formula is achieved.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [31] Coherent states of a time-dependent forced harmonic oscillator and their Aharonov-Anandan phase
    Liu, YF
    Lei, YA
    Zeng, JY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (06): : 661 - 665
  • [32] Coherent states of a time-dependent forced harmomc oscillator and their Aharonov-Anandan phase
    刘宇峰
    雷奕安
    曾谨言
    Science China Mathematics, 2000, (06) : 661 - 665
  • [33] ORBITAL AHARONOV-ANANDAN GEOMETRIC PHASE FOR CONFINED MOTION IN A PRECESSING MAGNETIC-FIELD
    FERNANDEZ, DJ
    DELOLMO, MA
    SANTANDER, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23): : 6409 - 6418
  • [34] Coherent states of a time-dependent forced harmonic oscillator and their Aharonov-Anandan phase
    Yufeng Liu
    Yi’an Lei
    Jinyan Zeng
    Science in China Series A: Mathematics, 2000, 43 : 661 - 665
  • [35] Aharonov-Anandan phase in a textured mesoscopic ring connected to current leads at extremely low temperatures
    Zhu, JX
    Wang, Y
    Wang, ZD
    Wang, QH
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 2389 - 2390
  • [36] An Aharonov-Anandan phase gate in the sub-Hilbert space of a coupling flux qubits system
    郑国林
    邓辉
    吴玉林
    王新强
    陈莺飞
    郑东宁
    Chinese Physics B, 2012, 21 (07) : 150 - 155
  • [37] Atomic interferometer measurements of Berry and Aharonov-Anandan phases for isolated spins S > 1/2 nonlinearly coupled to external fields
    Bouchiat, Marie-Anne
    Bouchiat, Claude
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [38] 半单李代数系统的演化和Aharonov-Anandan相因子
    许晶波
    高隽
    高孝纯
    科学通报, 1992, (09) : 792 - 795
  • [39] An Aharonov-Anandan phase gate in the sub-Hilbert space of a coupling flux qubits system
    Zheng, Guo-Lin
    Deng, Hui
    Wu, Yu-Lin
    Wang, Xin-Qiang
    Chen, Ying-Fei
    Zheng Dong-Ning
    CHINESE PHYSICS B, 2012, 21 (07)
  • [40] Complexity in the Lipkin-Meshkov-Glick model
    Pal, Kunal
    Pal, Kuntal
    Sarkar, Tapobrata
    PHYSICAL REVIEW E, 2023, 107 (04)