LOGARITHMICALLY IMPROVED REGULARITY CRITERION FOR THE 3D GENERALIZED MAGNETO-HYDRODYNAMIC EQUATIONS

被引:0
|
作者
赵继红 [1 ]
刘桥 [2 ]
机构
[1] College of Science,Northwest A&F University
[2] Department of Mathematics,Hunan Normal University
关键词
Generalized magneto-hydrodynamic equations; regularity criterion; multiplier spaces;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This article proves the logarithmically improved Serrin’s criterion for solutions of the 3D generalized magneto-hydrodynamic equations in terms of the gradient of the velocity field, which can be regarded as improvement of results in [10](Luo Y W. On the regularity of generalized MHD equations. J Math Anal Appl, 2010, 365: 806–808) and [18](Zhang Z J.Remarks on the regularity criteria for generalized MHD equations. J Math Anal Appl, 2011,375: 799–802).
引用
收藏
页码:568 / 574
页数:7
相关论文
共 50 条
  • [21] A regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Xu, Fuyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 634 - 644
  • [22] Remark on an improved regularity criterion for the 3D MHD equations
    Xu, Xiaojing
    Ye, Zhuan
    Zhang, Zujin
    APPLIED MATHEMATICS LETTERS, 2015, 42 : 41 - 46
  • [23] A logarithmically improved regularity criterion for the Navier-Stokes equations
    Liu, Qiao
    Zhao, Jihong
    Cui, Shangbin
    MONATSHEFTE FUR MATHEMATIK, 2012, 167 (3-4): : 503 - 509
  • [24] A logarithmically improved regularity criterion for the Boussinesq equations in a bounded domain
    Alghamdi, Ahmad M.
    Gala, Sadek
    Ragusa, Maria Alessandra
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (06):
  • [25] On the regularity criterion for the 3D generalized MHD equations in Besov spaces
    Zhang, Shuanghu
    Qiu, Hua
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 13
  • [26] On the regularity criterion for the 3D generalized MHD equations in Besov spaces
    Shuanghu Zhang
    Hua Qiu
    Boundary Value Problems, 2014
  • [27] GENERALIZED MAGNETO-HYDRODYNAMIC FORMULAE
    HINES, CO
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (02): : 299 - 307
  • [28] Logarithmically improved regularity criterion for the harmonic heat flow and related equations
    Chen, Xiaochun
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) : 6260 - 6263
  • [29] GLOBAL REGULARITY FOR 3D GENERALIZED HALL MAGNETO-HYDRODYNAMICS EQUATIONS
    Yuan, Baoquan
    Li, Chaoying
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1143 - 1158
  • [30] A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Xu, Fuyi
    Li, Xinliang
    Cui, Yujun
    Wu, Yonghong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):