Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey

被引:0
|
作者
Siyu ZHANG [1 ]
Lei SU [1 ]
Jiefei GU [1 ]
Ke LI [1 ]
Lang ZHOU [2 ]
Michael PECHT [3 ]
机构
[1] Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering,Jiangnan University
[2] HUST-Wuxi Research Institute
[3] Center for Advanced Life Cycle Engineering, University of Maryland,College Park
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Deep learning; Domain adaptation; Fault detection and diagnosis; Transfer learning;
D O I
暂无
中图分类号
V267 [航空器的维护与修理]; V467 [航天器的维护与修理];
学科分类号
082503 ;
摘要
In practical mechanical fault detection and diagnosis, it is difficult and expensive to collect enough large-scale supervised data to train deep networks. Transfer learning can reuse the knowledge obtained from the source task to improve the performance of the target task, which performs well on small data and reduces the demand for high computation power. However, the detection performance is significantly reduced by the direct transfer due to the domain difference.Domain adaptation(DA) can transfer the distribution information from the source domain to the target domain and solve a series of problems caused by the distribution difference of data. In this survey, we review various current DA strategies combined with deep learning(DL) and analyze the principles, advantages, and disadvantages of each method. We also summarize the application of DA combined with DL in the field of fault diagnosis. This paper provides a summary of the research results and proposes future work based on analysis of the key technologies.
引用
收藏
页码:45 / 74
页数:30
相关论文
共 50 条
  • [41] Fault detection and diagnosis for rotating machinery: A model-based approach
    Abdel-Magied, MF
    Loparo, KA
    Lin, W
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3291 - 3296
  • [42] Fault Diagnosis of Rotating Machinery based on Domain Adversarial Training of Neural Networks
    Di, Yun
    Yang, Rui
    Huang, Mengjie
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [43] Domain adaptive fault diagnosis based on Transformer feature extraction for rotating machinery
    Huang X.
    Wu T.
    Yang L.
    Hu Y.
    Chai Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (11): : 210 - 218
  • [44] Fault Diagnosis of Rotating Machinery Based on Wavelet Domain Denoising and Metric Distance
    Su, Naiquan
    Li, Xiao
    Zhang, Qinghua
    IEEE ACCESS, 2019, 7 : 73262 - 73270
  • [45] A review on deep learning based condition monitoring and fault diagnosis of rotating machinery
    Gangsar P.
    Bajpei A.R.
    Porwal R.
    Noise and Vibration Worldwide, 2022, 53 (11): : 550 - 578
  • [46] A Physics-based Deep Learning Approach for Fault Diagnosis of Rotating Machinery
    Sadoughi, Mohammadkazem
    Hu, Chao
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5919 - 5923
  • [47] A CAE-Based Deep Learning Methodology for Rotating Machinery Fault Diagnosis
    Yang, Daoguang
    Sun, Kangkang
    2021 7TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2021, : 393 - 396
  • [48] Fault diagnosis method of rotating machinery based on improved deep forest model
    Liu D.
    Deng A.
    Zhao M.
    Bian W.
    Xu M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (21): : 19 - 27
  • [49] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    SENSORS, 2019, 19 (10)
  • [50] Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection
    Han, Dongying
    Liang, Kai
    Shi, Peiming
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) : 939 - 953