LOCALIZED NODAL SOLUTIONS FOR SCHR?DINGER-POISSON SYSTEMS

被引:2
|
作者
王星 [1 ]
何锐 [1 ]
刘祥清 [1 ]
机构
[1] Department of Mathematics,Yunnan Normal University
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we study the existence of localized nodal solutions tor Schr?dingerPoisson systems with critical growth ■ We establish,for small ε,the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function via the perturbation method,and employ some new analytical skills to overcome the obstacles caused by the nonlocal termφ(x)=1/4π ∫u~2(y)/|x-y| dy.Our results improve and extend related ones in the literature.
引用
收藏
页码:1947 / 1970
页数:24
相关论文
共 50 条
  • [31] Positive solutions for a planar Schr?dinger-Poisson system with prescribed mass
    Tao, Mengfei
    Zhang, Binlin
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [32] Stability of Schrdinger-Poisson type equations
    黄娟
    张健
    陈光淦
    Applied Mathematics and Mechanics(English Edition), 2009, 30 (11) : 1469 - 1474
  • [33] Ground state solutions for a Schrödinger-Poisson system with unconventional potential
    Yao Du
    Chunlei Tang
    Acta Mathematica Scientia, 2020, 40 : 934 - 944
  • [34] Existence of infinitely many solutions for generalized Schrödinger-Poisson system
    Liping Xu
    Haibo Chen
    Boundary Value Problems, 2014
  • [35] Stability of Schrödinger-Poisson type equations
    Juan Huang
    Jian Zhang
    Guang-gan Chen
    Applied Mathematics and Mechanics, 2009, 30 : 1469 - 1474
  • [36] Existence, multiplicity and non-existence of solutions for modified Schr o?dinger-Poisson systems
    Zhang, Xian
    Huang, Chen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 3482 - 3503
  • [37] Schr?dinger-Poisson solitons: Perturbation theory
    Zagorac, J. Luna
    Sands, Isabel
    Padmanabhan, Nikhil
    Easther, Richard
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [38] Multiplicity of normalized solutions to a class of nonlinear fractional Schrödinger-Poisson systems with Hardy potential
    Du, Xinsheng
    Wang, Shanshan
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [39] Infinitely many distributional solutions to a general kind of nonlinear fractional Schrödinger-Poisson systems
    Hamza Boutebba
    Hakim Lakhal
    Kamel Slimani
    The Journal of Analysis, 2024, 32 : 1079 - 1091
  • [40] Schrödinger-Poisson systems with zero mass in the Sobolev limiting case
    Romani, Giulio
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) : 3501 - 3530