A FURTHER GENERALIZATION OF JUNG'S THEOREM

被引:0
|
作者
LI Jianping
TIAN Feng
SHEN Ruqun Institute of Systems Science
机构
基金
中国国家自然科学基金;
关键词
Neighborhood unions; 1-tough graph; Hamiltonian graph; circumference;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph of order n. We define the distance between two vertices u andv in G, denoted by d(u, v), as the minimum value of the lengths of all u-v paths. We writeσ(G)=min{∑=1~k d(v)|{v, v,…, v} is an independent set in G} and NC2(G)=min {|N(u)∪N(v)| | d(u, v)=2}. We denote by ω(G) the number of components of agraph G. A graph G is called 1-tough if ω(G\S)≤|S| for every subset S of V(G) withω(G\S)>l. By c(G) we denote the length of the longest cycle in G; in particular, G iscalled a Hamiltonian graph if c(G)=n. H.A. Jung proved that every 1-tough graphwith order n≥11 and σ2≥n-4 is Hamiltonian. We generalize it further as follows: ifG is a 1-tough graph and σ3(G)≥n, then c(G)≥min {n,2NC2(G)+4}. Thus, theconjecture of D. Bauer, G. Fan and H.J. Veldman in [2] is completely solved.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [41] Generalization of Obata's theorem
    J Geom Anal, 3 (357-375):
  • [42] A generalization of Jentzsch’s theorem
    E. A. Lebedeva
    Mathematical Notes, 2010, 88 : 717 - 722
  • [43] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [44] A generalization of Poncelet's theorem
    Protasov, V. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (06) : 1180 - 1182
  • [45] On a generalization of Polya's theorem
    Rochev, I. P.
    MATHEMATICAL NOTES, 2007, 81 (1-2) : 247 - 259
  • [46] A generalization of Obata’s theorem
    Akhil Ranjan
    G. Santhanam
    The Journal of Geometric Analysis, 1997, 7 (3): : 357 - 375
  • [47] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [48] A Generalization of Schatunowsky's Theorem
    Kaneko, Yuto
    Nakai, Hirofumi
    AMERICAN MATHEMATICAL MONTHLY, 2025,
  • [49] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [50] GENERALIZATION OF A THEOREM OF KULLBACK,S
    RECOULES, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (12): : 691 - 694