MUCLTIVARIATE RESISTANT REGRESSION SPLINES FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA

被引:0
|
作者
SHI Peide
ZHENG Zhongguo(Department of Probability and Statistics
机构
关键词
Regression spline; M-estimator; nonparametric regression; tensor products of B-splines;
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multivariate resistant regression spline (MURRS) method for estimatingan underlying smooth J-variate function by using noisy data is based on approximatingit with tensor products of B-splines and minimizing a sum of the ρ-functions of the residuals to obtain a robust estimator of the regression function, where the spline knots areautomatically chosen through a parallel of information criterion. When the knots are deterministically given, it is proved that the MURRS estimator achieves the optimal globalconvergence rates established by Stone under some mild conditions. Examples are givento illustrate the utility of the proposed methodology. Usually, only a few tensor productsof B-splines are enough to fit even complicated functions.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [31] Using Multivariate Adaptive Regression Splines to Estimate Subadult Age From Diaphyseal Dimensions
    Stull, Kyra E.
    L'Abbe, Ericka N.
    Ousley, Stephen D.
    [J]. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2014, 154 (03) : 376 - 386
  • [32] An optimization approach to signal extraction from noisy multivariate data
    Yokoo, T
    Knight, BW
    Sirovich, L
    [J]. NEUROIMAGE, 2001, 14 (06) : 1309 - 1326
  • [33] Using multivariate adaptive regression splines and classification and regression tree data mining algorithms to predict body weight of Nguni cows
    Hlokoe, Victoria Rankotsane
    Mokoena, Kwena
    Tyasi, Thobela Louis
    [J]. JOURNAL OF APPLIED ANIMAL RESEARCH, 2022, 50 (01) : 534 - 539
  • [34] Multivariate adaptive regression splines (MARS) applied to daily reference evapotranspiration modeling with limited weather data
    Ferreira, Lucas Borges
    Duarte, Anunciene Barbosa
    da Cunha, Fernando Franca
    Fernandes Filho, Elpidio Inacio
    [J]. ACTA SCIENTIARUM-AGRONOMY, 2019, 41
  • [35] Estimating the basic reproduction number from noisy daily data
    Descary, Marie-Helene
    Froda, Sorana
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 549
  • [36] Estimating state probability distributions from noisy and corrupted data
    Johnston, LPM
    Kramer, MA
    [J]. AICHE JOURNAL, 1998, 44 (03) : 591 - 602
  • [37] Reconstruction of periodic functions from noisy input data
    V. V. Ternovskii
    M. M. Khapaev
    [J]. Doklady Mathematics, 2009, 79 : 81 - 82
  • [38] Reconstruction of periodic functions from noisy input data
    Ternovskii, V. V.
    Khapaev, M. M.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (01) : 81 - 82
  • [40] Estimating covariance functions for longitudinal data using a random regression model
    Meyer, K
    [J]. GENETICS SELECTION EVOLUTION, 1998, 30 (03) : 221 - 240