Controlling flexibility of metal–organic frameworks

被引:9
|
作者
Jie-Peng Zhang [1 ]
Hao-Long Zhou [1 ]
Dong-Dong Zhou [1 ]
Pei-Qin Liao [1 ]
Xiao-Ming Chen [1 ,2 ]
机构
[1] MOE Key Laboratory of Bioinorganic and Synthetic Chemistry,School of Chemistry,Sun Yat-Sen University
[2] Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University
基金
中国国家自然科学基金;
关键词
porous coordination polymers; metal–organic frameworks; flexibility; dynamism; adsorption; structural transformation;
D O I
暂无
中图分类号
O641.4 [络合物化学(配位化学)];
学科分类号
070304 ; 081704 ;
摘要
Framework flexibility is one of the most important characteristics of metal–organic frameworks(MOFs),which is not only interesting, but also useful for a variety of applications. Designing, tailoring or controlling framework flexibility of MOFs is much more difficult than for static structural features such as the framework topology and pore size/shape. Nevertheless, with in-depth understanding of the relationship between framework flexibility and the host framework structure, guest loading and other aspects such as the crystal size/morphology and external physical environment, some strategies have been developed for controlling the flexibility of MOFs and the corresponding properties, which are summarized and discussed in this review.
引用
收藏
页码:907 / 919
页数:13
相关论文
共 50 条
  • [11] Preventing Undesirable Structure Flexibility in Pyromellitate Metal Organic Frameworks
    Hayes, Oliver G.
    Warrender, Stewart J.
    Cordes, David B.
    Duncan, Morven J.
    Slawin, Alexandra M. Z.
    Morris, Russell E.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 2020 (26) : 2537 - 2544
  • [12] Controlling Thermal Expansion: A Metal-Organic Frameworks Route
    Balestra, Salvador R. G.
    Bueno-Perez, Rocio
    Hamad, Said
    Dubbeldam, David
    Ruiz-Salvador, A. Rabdel
    Calero, Sofia
    CHEMISTRY OF MATERIALS, 2016, 28 (22) : 8296 - 8304
  • [13] Understanding and Controlling the Dielectric Response of Metal-Organic Frameworks
    Ryder, Matthew R.
    Dona, Lorenzo
    Vitillo, Jenny G.
    Civalleri, Bartolomeo
    CHEMPLUSCHEM, 2018, 83 (04): : 308 - 316
  • [14] Understanding and controlling the nucleation and growth of metal-organic frameworks
    Carpenter, Brooke P.
    Talosig, A. Rain
    Rose, Ben
    Di Palma, Giuseppe
    Patterson, Joseph P.
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (20) : 6918 - 6937
  • [15] Interplay between defects, disorder and flexibility in metal-organic frameworks
    Bennett, Thomas D.
    Cheetham, Anthony K.
    Fuchs, Alain H.
    Coudert, Francois-Xavier
    NATURE CHEMISTRY, 2017, 9 (01) : 11 - 16
  • [16] Interplay between defects, disorder and flexibility in metal-organic frameworks
    Bennett T.D.
    Cheetham A.K.
    Fuchs A.H.
    Coudert F.-X.
    Nature Chemistry, 2017, 9 (1) : 11 - 16
  • [17] Flexibility of metal-organic frameworks for separations: utilization, suppression and regulation
    Jin, Hua
    Li, Yanshuo
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2018, 20 : 107 - 113
  • [18] Torsional flexibility in zinc-benzenedicarboxylate metal-organic frameworks
    Meekel, Emily G.
    Nicholas, Thomas C.
    Slater, Ben
    Goodwin, Andrew L.
    CRYSTENGCOMM, 2024, 26 (05) : 673 - 680
  • [19] Flexibility found in silica-like metal-organic frameworks
    Collings, I. E.
    Goodwin, A. L.
    Thompson, A. L.
    Dove, M.
    Rimmer, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C485 - C486
  • [20] Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks
    Coupry, D. E.
    Butson, J.
    Petkov, P. S.
    Saunders, M.
    O'Donnell, K.
    Kim, H.
    Buckley, C.
    Addicoat, M.
    Heine, T.
    Szilagyi, P. A.
    CHEMICAL COMMUNICATIONS, 2016, 52 (29) : 5175 - 5178