Some Hypersurfaces with Constant Mean Curvature in a Conformally Flat Riemannian Manifold

被引:0
|
作者
水乃翔
欧阳崇珍
机构
[1] Hangzhou University
[2] Jiangxi University
关键词
Some Hypersurfaces with Constant Mean Curvature in a Conformally Flat Riemannian Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
§1. T. Otsuki [1] studied the minimal hypersurface Vof a Riemannian manifold Sof constant curvature if the number of the distinct principal normal curvatures is two and the multiplicities of them are at least two. He proved that Vis locally the Riemannian prodruct S×Sof two Riemannian manifolds Sand Sof constant curvature, where ιand ιare these multiplicities, respectively. In the present paper Sdenotes an m-dimensional Riemannian manifold of
引用
收藏
页码:5 / 10
页数:6
相关论文
共 50 条
  • [41] Mean curvature flow of hypersurfaces in Einsteinnian manifold
    Cai, KR
    [J]. CHINESE SCIENCE BULLETIN, 1996, 41 (07): : 616 - 616
  • [42] CONSTANT MEAN CURVATURE HYPERSURFACES IN SPHERES
    Deng, Qin-Tao
    Gu, Hui-Ling
    Su, Yan-Hui
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) : 77 - 86
  • [43] ON STABLE CONSTANT MEAN CURVATURE HYPERSURFACES
    Fu, Hai-Ping
    Li, Zhen-Qi
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (03) : 383 - 392
  • [44] Stable constant mean curvature hypersurfaces
    Elbert, Maria Fernanda
    Nelli, Barbara
    Rosenberg, Harold
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3359 - 3366
  • [45] Hypersurfaces in a sphere with constant mean curvature
    Hou, ZH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) : 1193 - 1196
  • [46] HYPERSURFACES OF CONSTANT MEAN EXTRINSIC CURVATURE
    STUMBLES, SM
    [J]. ANNALS OF PHYSICS, 1981, 133 (01) : 28 - 56
  • [47] HYPERSURFACES OF CONSTANT MEAN-CURVATURE
    DOCARMO, MP
    [J]. DIFFERENTIAL GEOMETRY, 1989, 1410 : 128 - 144
  • [48] Bifurcation and local rigidity of constant second mean curvature hypersurfaces in Riemannian warped products
    Velásquez, Marco A.L.
    Ramalho, André F.A.
    da Silva, Jonatan F.
    Oliveira, Jobson Q.
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 2020, 197
  • [49] HYPERSURFACES OF CONSTANT MEAN-CURVATURE
    DOCARMO, MP
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1410 : 128 - 144
  • [50] Bifurcation and local rigidity of constant second mean curvature hypersurfaces in Riemannian warped products
    Velasquez, Marco A. L.
    Ramalho, Andre F. A.
    da Silva, Jonatan F.
    Oliveira, Jobson Q.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197