Bifurcation and local rigidity of constant second mean curvature hypersurfaces in Riemannian warped products

被引:0
|
作者
Velasquez, Marco A. L. [1 ]
Ramalho, Andre F. A. [1 ]
da Silva, Jonatan F. [2 ]
Oliveira, Jobson Q. [3 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[3] Univ Estadual Ceara, Fac Educ Ciencias & Letras Sertao Cent, BR-63900000 Quixada, Ceara, Brazil
关键词
Riemannian warped product; H-2-hypersurfaces; Local rigidity; Bifurcation instants; Morse index; STABILITY; TORI;
D O I
10.1016/j.na.2020.111865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a Riemannian warped product I x (f) M-n, where I subset of R is an open interval, f is a positive real function defined on I and M-n is a compact Riemannian manifold without boundary, we use equivariant bifurcation theory in order to establish sufficient conditions, in terms of f and the spectrum of the Laplacian on M-n, that allow us to guarantee the existence of bifurcation instants or the local rigidity of a certain family of open sets whose boundaries are H-2-hypersurfaces, namely, whose boundaries are hypersurfaces with constant second mean curvature H-2. For each of our results, we have provided a considerable number of examples that verify all the assumptions under consideration. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Bifurcation and local rigidity of constant second mean curvature hypersurfaces in Riemannian warped products
    Velásquez, Marco A.L.
    Ramalho, André F.A.
    da Silva, Jonatan F.
    Oliveira, Jobson Q.
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 2020, 197
  • [2] HYPERSURFACES OF CONSTANT HIGHER ORDER MEAN CURVATURE IN WARPED PRODUCTS
    Alias, Luis J.
    Impera, Debora
    Rigoli, Marco
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 591 - 621
  • [3] On the rigidity of constant mean curvature complete vertical graphs in warped products
    Aquino, C. F.
    de Lima, H. F.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (04) : 590 - 596
  • [4] Prescribed Mean Curvature Hypersurfaces in Warped Products
    Andrade, Francisco J.
    Barbosa, Joao L. M.
    de Lira, Jorge H. S.
    [J]. FOLIATIONS, GEOMETRY, AND TOPOLOGY: PAUL SCHWEITZER FESTSCHRIFT, 2009, 498 : 161 - +
  • [5] RIGIDITY THEOREMS FOR HYPERSURFACES IN RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE
    LI, AM
    [J]. KEXUE TONGBAO, 1986, 31 (08): : 569 - 570
  • [6] Constant mean curvature hypersurfaces in Riemannian manifolds
    Pacard, Frank
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2005, 4 : 141 - 162
  • [7] Rigidity theorems for hypersurfaces with constant mean curvature
    Josué Meléndez
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 385 - 404
  • [8] Rigidity theorems for hypersurfaces with constant mean curvature
    Melendez, Josue
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (03): : 385 - 404
  • [9] ON THE RIGIDITY OF MEAN CURVATURE FLOW SOLITONS IN CERTAIN SEMI-RIEMANNIAN WARPED PRODUCTS
    Araujo, Jogli G.
    De Lima, Henrique F.
    Gomes, Wallace F.
    [J]. KODAI MATHEMATICAL JOURNAL, 2023, 46 (01) : 62 - 74
  • [10] On rigidity of hypersurfaces with constant curvature functions in warped product manifolds
    Wu, Jie
    Xia, Chao
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 46 (01) : 1 - 22