On Hardy’s Theorem on SU(1,1)

被引:0
|
作者
Takeshi KAWAZOE
机构
[1] Department of Mathematics Keio University at Fujisawa Endo
[2] Kanagawa
[3] 252-8520
[4] Japan.
基金
中国国家自然科学基金;
关键词
Heat kernel; Jacobi transform; Plancherel formula;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
070104 ;
摘要
The classical Hardy theorem asserts that ■ and its Fourier transform ■ can not both be very rapidly decreasing.This theorem was generalized on Lie groups and also for the Fourier-Jacobi transform.However,on SU(1,1)there are infinitely many"good"functions in the sense that ■ and its spherical Fourier transform ■ both have good decay. In this paper,we shall characterize such functions on SU(1,1).
引用
收藏
页码:429 / 440
页数:12
相关论文
共 50 条
  • [21] SU(1,1) SPIN COEFFICIENTS
    PERJES, Z
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 32 (1-4): : 207 - &
  • [22] Reframing SU(1,1) Interferometry
    Caves, Carlton M.
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (11)
  • [23] Reconstruction of SU(1,1) states
    Agarwal, GS
    Banerji, J
    PHYSICAL REVIEW A, 2001, 64 (02): : 7
  • [24] Quantum walk for SU(1,1)
    Duan, Liwei
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [25] Reconstruction of SU(1,1) states
    Agarwal, G.S.
    Banerji, J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (02): : 1 - 023815
  • [26] FACTORIZATION TYPES AND SU(1,1)
    CARLSTONE, DS
    AMERICAN JOURNAL OF PHYSICS, 1972, 40 (10) : 1459 - +
  • [27] su(1,1) intelligent states
    Joanis, Patrick
    Mahler, Dylan H.
    de Guise, Hubert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
  • [28] su(1,1|2)×su(1,1|2)李超代数的基础表示
    王春
    柯三民
    张凯
    王耀雄
    曾育
    石康杰
    西北大学学报(自然科学版), 2010, 40 (04) : 589 - 593
  • [29] A unified treatment of the characters of SU(2) and SU(1,1)
    Bal, S
    Shajesh, KV
    Basu, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) : 3209 - 3229
  • [30] Intelligent states in SU(2) and SU(1,1) interferometry
    Perinová, V
    Luks, A
    Krepelka, J
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (02) : 81 - 89