On Hardy’s Theorem on SU(1,1)

被引:0
|
作者
Takeshi KAWAZOE
机构
[1] Department of Mathematics Keio University at Fujisawa Endo
[2] Kanagawa
[3] 252-8520
[4] Japan.
基金
中国国家自然科学基金;
关键词
Heat kernel; Jacobi transform; Plancherel formula;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
070104 ;
摘要
The classical Hardy theorem asserts that ■ and its Fourier transform ■ can not both be very rapidly decreasing.This theorem was generalized on Lie groups and also for the Fourier-Jacobi transform.However,on SU(1,1)there are infinitely many"good"functions in the sense that ■ and its spherical Fourier transform ■ both have good decay. In this paper,we shall characterize such functions on SU(1,1).
引用
收藏
页码:429 / 440
页数:12
相关论文
共 50 条
  • [11] PALEY-WIENER TYPE THEOREM FOR FINITE COVERING GROUPS OF SU(1,1)
    NOMURA, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1977, 53 (06) : 195 - 197
  • [12] SU(1,1) covariant s-parametrized maps
    Klimov, Andrei B.
    Seyfarth, Ulrich
    de Guise, Hubert
    Sanchez-Soto, Luis L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (06)
  • [13] SU(2) AND SU(1,1) PHASE STATES
    VOURDAS, A
    PHYSICAL REVIEW A, 1990, 41 (03): : 1653 - 1661
  • [14] On the eigenvalue problem of the su(1,1)-algebra and the coupling scheme of two su(1,1)-spins
    Nishiyama, S
    da Providência, J
    Tsue, Y
    Yamamura, M
    PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (01): : 153 - 168
  • [15] SU(1,1) squeezed state
    Huang, Yixiao
    Xiong, Heng-Na
    Zhong, Wei
    Liu, Bo
    Wang, Xiaoguang
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (18)
  • [16] Wigner function for SU(1,1)
    Seyfarth, U.
    Klimov, A. B.
    de Guise, H.
    Leuchs, G.
    Sanchez-Soto, L. L.
    QUANTUM, 2020, 4
  • [17] SU(1,1) random polynomials
    Bleher, P
    Ridzal, D
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 147 - 171
  • [18] PHENOMENOLOGICAL SU(1,1) SUPERGRAVITY
    ELLIS, J
    KOUNNAS, C
    NANOPOULOS, DV
    NUCLEAR PHYSICS B, 1984, 241 (02) : 406 - 428
  • [19] POTENTIALS GENERATED BY SU(1,1)
    SUKUMAR, CV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11): : 2229 - 2232
  • [20] The Poisson geometry of SU(1,1)
    Foth, Philip
    Lamb, McKenzie
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)