On the Second Smallest and the Largest Normalized Laplacian Eigenvalues of a Graph

被引:0
|
作者
Xiao-guo TIAN [1 ]
Li-gong WANG [1 ,2 ]
You LU [1 ]
机构
[1] Department of Applied Mathematics, School of Science, Northwestern Polytechnical University
[2] Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
second smallest normalized Laplacian eigenvalue; normalized Laplacian spectral radius; normalized signless Laplacian spectral radius;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let G be a simple connected graph with order n.Let L(G) and Q(G) be the normalized Laplacian and normalized signless Laplacian matrices of G,respectively.Let λ;(G) be the k-th smallest normalized Laplacian eigenvalue of G.Denote by p(A) the spectral radius of the matrix A.In this paper,we study the behaviors of λ;(G) and ρ(L(G)) when the graph is perturbed by three operations.We also study the properties of ρ(L(G)) and X for the connected bipartite graphs,where X is a unit eigenvector of L(G) corresponding toρ(L(G)).Meanwhile we characterize all the simple connected graphs with ρ(L(G))=ρ(Q(G)).
引用
收藏
页码:628 / 644
页数:17
相关论文
共 50 条
  • [11] An edge-separating theorem on the second smallest normalized Laplacian eigenvalue of a graph and its applications
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    Chang, An
    DISCRETE APPLIED MATHEMATICS, 2014, 171 : 104 - 115
  • [12] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [13] Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch
    DISCRETE MATHEMATICS, 2012, 312 (05) : 992 - 998
  • [14] Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian
    Jost, Juergen
    Mulas, Raffaella
    Muench, Florentin
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 371 - 381
  • [15] Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian
    Jürgen Jost
    Raffaella Mulas
    Florentin Münch
    Communications in Mathematics and Statistics, 2022, 10 : 371 - 381
  • [16] Bounds for the largest and the smallest Aα eigenvalues of a graph in terms of vertex degrees
    Wang, Sai
    Wong, Dein
    Tian, Fenglei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 : 210 - 223
  • [17] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [18] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Ganie, Hilal A.
    Pirzada, S.
    Trevisan, Vilmar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [19] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Hilal A. Ganie
    S. Pirzada
    Vilmar Trevisan
    Mediterranean Journal of Mathematics, 2021, 18
  • [20] NOTE ON THE SUM OF THE SMALLEST AND LARGEST EIGENVALUES OF A TRIANGLE-FREE GRAPH
    Csikvári, Péter
    arXiv, 2022,