Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits

被引:0
|
作者
张琦 [1 ]
张广铭 [1 ,2 ]
机构
[1] State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,Tsinghua University
[2] Frontier Science Center for Quantum Information
关键词
D O I
暂无
中图分类号
O413 [量子论];
学科分类号
070201 ;
摘要
A random quantum circuit is a minimally structured model to study entanglement dynamics of many-body quantum systems.We consider a one-dimensional quantum circuit with noisy Haar-random unitary gates using density matrix operator and tensor contraction methods.It is shown that the entanglement evolution of the random quantum circuits is properly characterized by the logarithmic entanglement negativity.By performing exact numerical calculations,we find that,as the physical error rate is decreased below a critical value pc≈0.056,the logarithmic entanglement negativity changes from the area law to the volume law,giving rise to an entanglement transition.The critical exponent of the correlation length can be determined from the finite-size scaling analysis,revealing the universal dynamic property of the noisy intermediate-scale quantum devices.
引用
收藏
页码:23 / 28
页数:6
相关论文
共 50 条
  • [31] Noise-induced quantum transport
    Ghosh, PK
    Barik, D
    Ray, DS
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [32] Anomalous diffusion on a one-dimensional disordered system with a random noise
    Tomita, I
    PHYSICS LETTERS A, 1998, 249 (5-6) : 501 - 504
  • [33] Anomalous diffusion on a one-dimensional disordered system with a random noise
    Tomita, Isao
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 249 (5-6): : 501 - 504
  • [34] Quantum wetting transition in the one-dimensional transverse-field Ising model with random bonds
    Hu, Kun
    Wu, Xintian
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [35] Visualizing quasiparticles from quantum entanglement for general one-dimensional phases
    Wybo, Elisabeth
    Pollmann, Frank
    Sondhi, S. L.
    You, Yizhi
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [36] Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems
    Perales, Alvaro
    Vidal, Guifre
    PHYSICAL REVIEW A, 2008, 78 (04)
  • [37] Quantum Phase Transition in the One-Dimensional Water Chain
    Serwatka, T.
    Melko, R. G.
    Burkov, A.
    Roy, P. -N.
    PHYSICAL REVIEW LETTERS, 2023, 130 (02)
  • [38] Ground state entanglement in one-dimensional translationally invariant quantum systems
    Irani, Sandy
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [39] Entanglement in the quantum one-dimensional integer spin S Heisenberg antiferromagnet
    Lima, L. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 483 : 239 - 242
  • [40] Quantum phase transition in the one-dimensional compass model
    Brzezicki, Wojciech
    Dziarmaga, Jacek
    Oles, Andrzej M.
    PHYSICAL REVIEW B, 2007, 75 (13)